2 research outputs found

    How To Break the Janus Effect of H <sub>2</sub> O <sub>2</sub> in Biocatalysis? Understanding Inactivation Mechanisms To Generate more Robust Enzymes

    No full text
    H 2 O 2 , is an attractive oxidant for synthetic chemistry, especially if activated as percarboxylic acid. H 2 O 2 , however, is also a potent inactivator of enzymes. Protein engineering efforts to improve enzyme resistance against H 2 O 2 in the past have mostly focused on tedious probabilistic directed evolution approaches. Here we demonstrate that a rational approach combining multiscale MD simulations and Born-Oppenheimer ab initio QM/MM MD simulations is an efficient approach to rapidly identify improved enzyme variants. Thus, the lipase from Penicillium camembertii was redesigned with a single mutation (I260R), leading to drastic improvements in H 2 O 2 resistance while maintaining the catalytic activity. Also the extension of this methodology to other enzymes is demonstrated. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi

    Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    No full text
    Background: Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results: This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion: Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata
    corecore