375 research outputs found
Optimizing the Dynamic Distribution of Data-stream for High Speed Communications
The performances of high-speed network communications frequently rest with the distribution of data-stream. In this paper, a dynamic data-stream balancing architecture based on link information is introduced and discussed firstly. Then the algorithms for simultaneously acquiring the passing nodes and links of a path between any two source-destination nodes rapidly, as well as a dynamic data-stream distribution planning are proposed. Some related topics such as data fragment disposal, fair service, etc. are further studied and discussed. Besides, the performance and efficiency of proposed algorithms, especially for fair service and convergence, are evaluated through a demonstration with regard to the rate of bandwidth utilization. Hoping the discussion presented here can be helpful to application developers in selecting an effective strategy for planning the distribution of data-stream.Singapore-MIT Alliance (SMA
Moving HomePlug to Industrial Applications with Power-Line Communication Network
Home networking is becoming an attractive application not only for the Internet access but also for home automation. Being a high-speed and dominant standard presently, HomePlug has an important role in home LAN connecting to the Internet. For industrial applications, the Power Line Communication also has significant advances. However, the PHY/MAC technology provided by HomePlug still cannot be employed with some critical features such as real time performance, implications in the event of link and node loss. In this paper, the characteristics of HomePlug PHY/MAC, the property of power line channel, as well as the noise features of power line are analyzed. Based on HomePlug, a model of high level real-time protocol applied to industrial environment is proposed. The protocol simultaneously belongs to layer two and three, and can support real-time implementation with no loss and small delay according to the requirement in PLC networks, for targeting to develop a real time network with high speed power line media and advanced modulation.Singapore-MIT Alliance (SMA
Flux dynamics and vortex phase diagram of the new superconductor
Magnetic critical current density and relaxation rate have been measured on
bulks from 1.6 K to at magnetic fields up to 8 Tesla. A vortex
phase diagram is depicted based on these measurement. Two phase boundaries
and characterizing different irreversible
flux motions are found. The is characterized by the
appearance of the linear resistivity and is attributed to quantum vortex
melting induced by quantum fluctuation of vortices in the rather clean system.
The second boundary reflects the irreversible flux motion in
some local regions due to either very strong pinning or the surface barrier on
the tiny grains.Comment: 4 pages, 5 figure
Differences in foetal topographical anatomy between insertion sites of the iliopsoas and gluteus medius muscles into the proximal femur: a consideration of femoral torsion
Background: Prenatal twisting of the femoral neck seems to result in an angle of anteversion or torsion, but the underlying process has not been elucidated.
Materials and methods: This study analysed sagittal, frontal and horizontal sections of 34 embryo and foetal specimens of gestational age (GA) 6–16 weeks (crown-rump length 21–130 mm). At GA 6–7 weeks, the iliopsoas (IP) and gluteus medius (GME) muscles were inserted into the anterior and posterior aspects of the femur, respectively, allowing both insertions to be viewed in a single sagittal section.
Results: At GA 8 weeks, the greater trochanter and the femoral neck angle became evident, and the GME tendon was inserted into the upper tip of the trochanter. At GA 9 weeks, the location of IP insertion was to the medial side of the GME insertion. After 9 weeks, the IP insertion consisted of a wavy, tendino- us part of the psoas muscle and another part of the iliacus muscle, with many fibres of the latter muscle attached to the joint capsule. After GA 12 weeks, the IP was inserted into the anteromedial side of the greater trochanter, while the aponeurotic insertion of the GME wrapped around the trochanter. At GA 15–16 weeks, a deep flexion at the hip joint caused an alteration in the relative heights of the lesser and greater trochanter, with the former migrating from the inferior to the slightly superior side.
Conclusions: These findings indicate that twisting of the femoral neck started at GA 8–9 weeks.
Development of digastric muscles in human foetuses: a review and findings in the flexor digitorum superficialis muscle
The digastricus and omohyoideus muscles are digastric muscles with two muscle bellies. An insertion tendon of the posterior belly becomes an intermediate tendon in digastricus muscles, whereas a single band-like muscle in omohyoideus muscles may later be interrupted by an intermediate tendon, possibly due to muscle cell death caused by mechanical stress. In human foetuses, an intermediate tendon provides the temporal origins of the tensor veli palatini and tensor tympani muscles. Some reptiles, including snakes, carry multiple series of digastric-like axial muscles, in which each intersegmental septum is likely to become an intermediate tendon. These findings indicate that many pathways are involved in the development of digastric muscles. A review of these morphologies suggested that the flexor digitorum superficialis (FDS) muscle was a digastric muscle, although the intermediate tendon may not be visible in the surface view in adults. The present observations support the hypothesis that the proximal anlage at the elbow develops into a deep muscle slip to a limited finger, while the distal anlage at the wrist develops into the other slips. The findings suggest that, in the FDS muscle, the proximal and distal bellies of the embryonic digastric muscle fuse together to form a laminar structure, in which muscle slips accumulate from the palmar to the deep side of the forearm. (Folia Morphol 2018; 77, 2: 362–370
Dimensional Crossover of Vortex Dynamics Induced by Gd Substitution on Bi2212 Single Crystals
The vortex dynamics of BiSrCaGdCuO
single crystals is investigated by magnetic relaxation and hysteresis
measurements. By substituting with , it is found that the interlayer
Josephson coupling is weakened and the anisotropy is increased, which leads to
the change of vortex dynamics from 3D elastic to 2D plastic vortex creep.
Moreover, the second magnetization peak, which can be observed in samples near
the optimal doping, is absent in the strongly underdoped (with 2D vortex)
region.Comment: 16 Pages, 6 Figures, To appear in Physica
Vortex microavalanches in superconducting Pb thin films
Local magnetization measurements on 100 nm type-II superconducting Pb thin
films show that flux penetration changes qualitatively with temperature. Small
flux jumps at the lowest temperatures gradually increase in size, then
disappear near T = 0.7Tc. Comparison with other experiments suggests that the
avalanches correspond to dendritic flux protrusions. Reproducibility of the
first flux jumps in a decreasing magnetic field indicates a role for defect
structure in determining avalanches. We also find a temperature-independent
final magnetization after flux jumps, analogous to the angle of repose of a
sandpile.Comment: 6 pages, 5 figure
Local threshold field for dendritic instability in superconducting MgB2 films
Using magneto-optical imaging the phenomenon of dendritic flux penetration in
superconducting films was studied. Flux dendrites were abruptly formed in a 300
nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed
measurements of flux density distributions show that there exists a local
threshold field controlling the nucleation and termination of the dendritic
growth. At 4 K the local threshold field is close to 12 mT in this sample,
where the critical current density is 10^7 A/cm^2. The dendritic instability in
thin films is believed to be of thermo-magnetic origin, but the existence of a
local threshold field, and its small value are features that distinctly
contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
The Vacuum System of HIRFL
AbstractThe vacuum system of Heavy Ion Research Facility in Lanzhou (HIRFL) is a large and complex system. HIRFL consists of two ECR ion sources, a sector focus cyclotron (SFC), a separate sector cyclotron (SSC) and a multi-purpose cooling storage ring system which has a main ring (CSRm) and an experiment ring (CSRe). Several beam lines connect these accelerators together and transfer various heavy ion beams to more than 10 experiment terminals. According to the requirements of the ion acceleration and ion lifetime, the working pressure in each accelerator is different. SFC is nearly 50 years old. After upgrade, the working pressure in SFC is improved from 10-6mbar to 10-8mbar. The pressure in SSC which was built in the 1980s reaches the same level. The cooling storage ring system with a length of 500m came into operation in 2007. The average pressures in CSRm and CSRe are 5×10-12mbar and 8×10-12mbar respectively. Different designs were adopt for vacuum system of a dozen beam lines to meet specific requirement of each experiment terminal. Along with the extensive development of the heavy ion researches and applications, new accelerators of HIRFL are under construction. The vacuum system of the new machines will be designed and constructed followed the overall schedule
k=0Magnetic Structure and Absence of Ferroelectricity in SmFeO3
SmFeO3 has attracted considerable attention very recently due to the reported
multiferroic properties above room-temperature. We have performed powder and
single crystal neutron diffraction as well as complementary polarization
dependent soft X-ray absorption spectroscopy measurements on floating-zone
grown SmFeO3 single crystals in order to determine its magnetic structure. We
found a k=0 G-type collinear antiferromagnetic structure that is not compatible
with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While
the structural data reveals a clear sign for magneto-elastic coupling at the
N\'eel-temperature of ~675 K, the dielectric measurements remain silent as far
as ferroelectricity is concerned
- …