31 research outputs found

    More on Descriptive Complexity of Second-Order HORN Logics

    Full text link
    This paper concerns Gradel's question asked in 1992: whether all problems which are in PTIME and closed under substructures are definable in second-order HORN logic SO-HORN. We introduce revisions of SO-HORN and DATALOG by adding first-order universal quantifiers over the second-order atoms in the bodies of HORN clauses and DATALOG rules. We show that both logics are as expressive as FO(LFP), the least fixed point logic. We also prove that FO(LFP) can not define all of the problems that are in PTIME and closed under substructures. As a corollary, we answer Gradel's question negatively

    NP-Logic Systems and Model-Equivalence Reductions

    Full text link
    In this paper we investigate the existence of model-equivalence reduction between NP-logic systems which are logic systems with model existence problem in NP. It is shown that among all NP-systems with model checking problem in NP, the existentially quantified propositional logic (\exists PF) is maximal with respect to poly-time model-equivalent reduction. However, \exists PF seems not a maximal NP-system in general because there exits a NP-system with model checking problem D^P-complete

    A Logic that Captures β\betaP on Ordered Structures

    Full text link
    We extend the inflationary fixed-point logic, IFP, with a new kind of second-order quantifiers which have (poly-)logarithmic bounds. We prove that on ordered structures the new logic logωIFP\exists^{\log^{\omega}}\text{IFP} captures the limited nondeterminism class βP\beta\text{P}. In order to study its expressive power, we also design a new version of Ehrenfeucht-Fra\"iss\'e game for this logic and show that our capturing result will not hold on the general case, i.e. on all the finite structures.Comment: 15 pages. This article was reported with a title "Logarithmic-Bounded Second-Order Quantifiers and Limited Nondeterminism" in National Conference on Modern Logic 2019, on November 9 in Beijin

    Jordan Areas and Grids

    Get PDF
    AbstractJordan curves can be used to represent special subsets of the Euclidean plane, either the (open) interior of the curve or the (compact) union of the interior and the curve itself. We compare the latter with other representations of compact sets using grids of points and we are able to show that knowing the length of a rectifiable curve is sufficient to translate from the grid representation to the Jordan curve

    Linear CNF formulas and satisfiability

    Get PDF
    In this paper, we study {em linear} CNF formulas generalizing linear hypergraphs under combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-completeness of SAT for the unrestricted linear formula class, and we show the equivalence of NP-completeness of restricted uniform linear formula classes w.r.t. SAT and the existence of unsatisfiable uniform linear witness formulas. On that basis we prove the NP-completeness of SAT for the uniform linear classes in a proof-theoretic manner by constructing however large-sized formulas. Interested in small witness formulas, we exhibit some combinatorial features of linear hypergraphs closely related to latin squares and finite projective planes helping to construct somehow dense, and significantly smaller unsatisfiable k -uniform linear formulas, at least for the cases k=3,4
    corecore