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Abstract

In this paper, we study linear CNF formulas generalizing linear hypergraphs un-
der combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-
completeness of SAT for the unrestricted linear formula class, and we show the equiv-
alence of NP-completeness of restricted uniform linear formula classes w.r.t. SAT
and the existence of unsatisfiable uniform linear witness formulas. On that basis we
prove the NP-completeness of SAT for the uniform linear classes in a proof-theoretic
manner by constructing however large-sized formulas. Interested in small witness
formulas, we exhibit some combinatorial features of linear hypergraphs closely re-
lated to latin squares and finite projective planes helping to construct somehow
dense, and significantly smaller unsatisfiable k-uniform linear formulas, at least for
the cases k = 3, 4.

Key words: linear CNF formula, satisfiability, NP-completeness, resolution proof,
latin square, finite projective plane

1 Introduction

A prominent concept in hypergraph research are linear hypergraphs [1] having
the special property that its hyperedges pairwise have at most one vertex in
common. A hypergraph is called loopless if no hyperedge has length one. A
long-standing open problem for linear hypergraphs is the Erdős-Farber-Lovas̀z
conjecture [6] stating that for each loopless linear hypergraph over n vertices
there exists an edge n-coloring such that hyperedges of non-empty intersection
are colored differently. In this paper we introduce the class of linear CNF

? Preliminary versions of this paper appeared in [15,14].
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formulas generalizing the concept of linear hypergraphs. In a linear formula
each pair of distinct clauses has at most one variable in common.

The motivation for our work basically is the abstract interest in the structure
and the complexity of linear formulas w.r.t. the satisfiability problem (SAT).
We thus take a theoretical point of view in this paper. However, the class of
linear formulas may be useful for applications with objects exhibiting only
weak interdependencies in the sense that the corresponding CNF encodings
yield only sparsely overlapping clauses.

By reduction from the well known SAT problem it can be shown that SAT
restricted to linear CNF formulas remains NP-complete. The reduction relies
on introducing new variables for variables occuring in clauses having at least
two variables in common with a different clause. The truth values of the orig-
inal variable and the corresponding new one must be forced to be identical.
This can easily be achieved by convenient binary clauses, but having the con-
sequence not to work for showing NP-completeness of linear formula classes
having least clause length k, for fixed k ≥ 3. However, we show that these
w.r.t. k clause length restricted classes of linear formulas behave NP-complete
for SAT if and only if there is an unsatisfiable k-uniform linear witness formula.
Relying on this result we provide a resolution-based proof-theoretic inductive
manner for obtaining the desired witness formulas for any integer k ≥ 2. Un-
fortunately, careful analysis of the growth behaviour in k of these formulas is
extremely. To come up with this difficulty, and guided by the question what
are small(est) k-uniform formulas, we provide a construction scheme that at
least for the cases k = 3, 4 yields significantly smaller unsatisfiable k-uniform
formulas. In that context we figure out some combinatorial reasons, closely
related to finite projective planes and orthogonal latin squares, supplying the
essential hardness of constructing (small) unsatisfiable linear formulas.

Organization of the paper: In Section 2 we focus on the special substructures of
linear hypergraphs and linear formulas. Followed in Section 3 by a considera-
tion on the exact linear case for which the EFL-conjecture holds, respectively,
satisfiability decision can be performed efficiently. The general LCNF-SAT
complexity problem is treated in Section 4 showing that LCNF-SAT remains
NP-complete, even for the class of k-uniform linear formulas, where k is ar-
bitrary; this can be established by a proof-theoretic approach. In Section 5
certain combinatorial properties of specific linear hypergraphs and formulas
are revealed. On that basis, in Section 6, we provide a scheme towards finding
small unsatisfiable uniform linear formulas, that grow with k in size much less
than those obtained by the proof-theoretic approach. Finally, in Section 7 we
formulate some open problems.
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2 Linear hypergraphs and linear formulas

To fix notation let CNF denote the set of formulas (free of duplicate clauses)
in conjunctive normal form over propositional variables xi ∈ {0, 1}. A variable
x induces a positive literal (variable x) or a negative literal (negated variable:
x). The complement of a literal l is l. Each formula C ∈ CNF is considered as
a set of its clauses C = {c1, . . . , c|C|} having in mind that it is a conjunction
of these clauses. Each clause c ∈ C is a disjunction of different literals, and
is also represented as a set c = {l1, . . . , l|c|}. A clause c ∈ C is called unit
iff |c| = 1. For a given formula C, clause c, by V (C), V (c) we denote the set
of variables occuring (negated or unnegated) in C resp. c. For a variable x,
l(x) ∈ {x, x̄} denotes a fixed literal over x.

The satisfiability problem (SAT) takes as input a formula C ∈ CNF and asks
whether there is a truth (value) assignment t : V (C) → {0, 1} such that at
least one literal in each clause of c is set to 1, in which case C is said to be
satisfiable, and t is called a model of C. For convenience we allow the empty
set to be a formula: ∅ ∈ CNF which is satisfiable. We throughout assume that
clauses contain no complemented pairs of literals such as x, x which is no loss
of generality because these clauses always are satisfiable and can be removed
at once from a formula.

Given a mapping f : A → A we denote its ith iterative as f (i) : A → A,
i ∈ Z+, which as usual is inductively defined via

∀i ∈ N, ∀a ∈ A : f (i)(a) := f (i−1)(f(a))

where f (0) := idA and f (1) := f .

A hypergraph is a pair H = (V, E) where V = V (H) is a finite set, the
vertex set and E = E(H) is a family of subsets of V the (hyper)edge set such
that for each x ∈ V there is an edge containing it. If |e| ≥ 2 holds for all
edges of a hypergraph it is called loopless. H is called k-uniform if for each
edge holds |e| = k and k is a fixed positive integer. For a vertex x of H, let
Ex = {e ∈ E : x ∈ e} be the set of all edges containing x. Then ωH(x) := |Ex|
denotes the degree of vertex x in H, we simply write ω(x) when there is no
danger of confusion. H is called j-regular if there is a positive integer j and
each vertex has degree j in H. We call ‖E‖ :=

∑
e∈E |e| the length of the

hypergraph which is a useful constant. The next equation, throughout refered
to as the length condition of H, is obvious, but useful:

‖E‖ =
∑
e∈E

|e| =
∑
x∈V

ω(x)

If, for fixed integer k, 1 ≤ ω(x) ≤ k ≤ |e| for each x ∈ V and e ∈ E, then by
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the length condition, we simply have:

k|E| ≤
∑
e∈E

|e| = ‖E‖ =
∑
x∈V

ω(x) ≤ k|V |

yielding:

Lemma 1 Let H = (V, E) be an arbitrary simple hypergraph such that for all
x ∈ V and e ∈ E holds 1 ≤ ω(x) ≤ k ≤ |e|, then |E| ≤ |V |. 2

A hypergraph is called linear if (∗) : |e ∩ e′| ≤ 1, e 6= e′, and is called exact
linear if in (∗) equality holds for each pair of distinct hyperedges. Let LIN (resp.
XLIN) denote the class of all linear (resp. exact linear) (finite) hypergraphs.
There are some useful graphs that can be assigned to a hypergraph H = (V, E).
First, the intersection graph GE of H. It has a vertex for each hyperedge and
two vertices are joined by an edge in GE if the corresponding hyperedges have
a non-empty intersection; let each edge of GE be labeled by the vertices in the
corresponding intersection of hyperedges. Further, the vertex graph GV with
vertex set V . x and x′ are joined by an edge in GV iff there is a hyperedge in
E containing x and x′, let each edge of GV be labeled by the corresponding
hyperedges. Clearly, for each e ∈ E the induced subgraph GV |e of GV is
isomorphic to the complete graph K|e|. The incidence graph of a hypergraph
H = (V, E) is the bipartite graph whose vertex set is V ∪ E. Each vertex is
joined to all hyperedges containing it.

Let χ′(H) denote the edge chromatic number of a hypergraph H, i.e., χ′(H)
is the smallest number of colors such that intersecting edges of H = (V, E)
have distinct colors. It is easy to see that χ′(H) is equal to χ(GE), for the
intersection graph GE of H, where χ(G) denotes the usual chromatic number
of a graph G. The Erdős-Farber-Lovas̀z (EFL-)conjecture [6] states that every
loopless linear hypergraph of n vertices admits an edge coloring of at most
n colors, in other words, its intersection graph needs at most n colors for a
proper vertex coloring. As a simple observation, we have:

Lemma 2 If the EFL-conjecture holds for all loopless linear hypergraphs, then
it also holds for the larger class LIN.

PROOF. Let H = (V, E) ∈ LIN, n := |V |, with intersection graph GE and
let E1(H) = {e = {xe}} be the collection of all single element hyperedges in
H. Let us proceed by induction on m1 := |E1(H)| ≥ 0. If E1(H) = ∅, we are
done, since then H is loopless. Now let m1 ≥ 1, and assume that the assertion
holds for each H such that |E1(H)| < m1. Let e = {x} ∈ E1(H). If e is isolated
in GE we can color e by x because x is a unique vertex in H yielding never
more than n colors for a proper n vertex coloring of GE. If e is not isolated,
let E ′ ⊂ E be the set of all hyperedges joined to e in GE; the members of E ′
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have in common vertex x only, by linearity, and E ′ ∩ E1(H) = ∅. Therefore
E ′ contains at least 1 + |E ′| different vertices including x, hence n ≥ 1 + |E ′|.
Now, hypergraph H ′ obtained from H by removing e has the same vertex set
as H and can be n-edge colored by induction hypotheses. Each member of E ′

in such a coloring is colored differently, but there are used only |E ′| colors,
and there is left at least one color for e completing the proof. 2

By the last result, regarding the edge colorability of exact linear hypergraphs
we are justified to assume their looplessness.

Now let us transfer the notion of linearity to CNF formulas.

Definition 3 C ∈ CNF is called linear if
(1) C contains no pair of complementary unit clauses and
(2) (∗): for all c1, c2 ∈ C : c1 6= c2 holds |V (c1) ∩ V (c2)| ≤ 1.
C is called exact linear if equality holds in (∗).
Let (X)LCNF denote the class of all (exact) linear formulas. Similarly, denote
by (X)LCNF≥k the class of all (exact) linear formulas, of clauses having length
at least k ∈ N.

Clearly formulas that do not have property (1) are unsatisfiable. The size of
linear formulas over n variables is quite restricted:

Lemma 4 For C ∈ LCNF, with n := |V (C)| holds |C| ≤ n +
(

n
2

)
.

PROOF. Let V (C) = {x1, . . . , xn}. C can have at most n unit clauses which
are independent of the remaining formula, because otherwise by the pigeonhole
principle there exists a pair of complementary unit clauses. Since C is linear
each pair of variables (xi, xj), with j > i, can occur in exactly one clause of C,

yielding
(

n
2

)
possible clauses of length at least 2 by the pigeonhole principle

completing the proof. 2

Due to condition (1) in Definition 3 a linear formula C directly corresponds
to a linear hypergraph HC by disregarding all negations of variables which
correspond to the vertices and the clauses to the hyperedges; we call HC the
underlying hypergraph of C. A monotone formula by definition has no negated
variables and thus is identical to its underlying hypergraph. For formulas we
define C(x) := {c ∈ C|x ∈ V (c)} and ω(x) := |C(x)| which is the degree
of x in HC , if C is linear. So, we are justified to call a linear formula C
j-regular, resp. k-uniform if HC is j-regular resp. k-uniform. Similarly, the
incidence graph IC resp. the intersection graph GC of C are identified by the
corresponding graphs of HC , the variable graph GV (C) of C is defined to be the
vertex graph of HC . Finally, the length ‖C‖ of C equals ‖E(HC)‖. Reversely,
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to a given linear hypergraph H there corresponds a family C(H) of linear
formulas such that H is the underlying hypergraph of each C ∈ C. Observe
that C(H) (up to permutations of vertices in the hyperedges) has size 2‖E(H)‖

if E(H) is the edge set of H. Note that the incidence graph can also be defined
for arbitrary formulas yielding a useful condition for satisfiability:

Lemma 5 For C ∈ CNF, such that for every subformula C ′ ⊆ C holds |C ′| ≤
|V (C ′)|, we have C ∈ SAT.

PROOF. Let IC be the incidence graph of C with vertex set partition V (C)∪
C. It is easy to see, that every subset C ′ ⊆ C has the neighbourhood NI(C

′) =
V (C ′) ⊆ V (C) in IC . Because of |C ′| ≤ |V (C ′)| = |NI(C

′)| for every subset
C ′ ⊆ C, we can apply the classical Theorem of König-Hall [9,10] for bipartite
graphs stating that there exists a matching in IC covering component C of the
vertex set. In terms of the formula, this means that there is a set of variables,
corresponding to the vertices of the matching edges such that each of it is
assigned uniquely to a clause of C such that no clause is left out. Since these
variables are all distinct the corresponding literals can independently be set
to true yielding a model of C. 2

A simple application is that a formula in which each clause has length at least
k and each variable occurs at most j times is satisfiable if k ≥ j:

Lemma 6 Let C ∈ CNF such that ∀c ∈ C : |c| ≥ k and ∀x ∈ V (C) : ω(x) ≤ j
with k ≥ j, then C ∈ SAT.

PROOF. The proof is straightforward by observing that

j|V (C ′)| ≥
∑

x∈V (C′)

ωC′(x) = ‖C ′‖ =
∑
c∈C′
|c| ≥ k|C ′| ≥ j|C ′|

for every C ′ ⊆ C and applying Lemma 5. 2

The special case of j = k of the above Lemma was shown by Tovey in [18].
Restated for formulas, the result above tells us that these formulas and all
its subformulas have deficiency m − n at most 0 corresponding to matching
formulas as introduced in [8].
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3 Exact linear hypergraphs and formulas

Some of the combinatorial structure of a linear formula is reflected by its un-
derlying hypergraph. So, before treating the class of exact linear hypergraphs
and formulas, let us collect some elementary relations holding for arbitrary
linear hypergraphs:

Lemma 7 For H = (V, E) ∈ LIN with n := |V |, m := |E| ≥ 1 holds:
(i) ∀e ∈ E holds m ≥ 1− |e|+∑

x∈e ω(x),
(ii) m(m− 1) ≥ ∑x∈V ω(x)(ω(x)− 1),
(iii) ∀x ∈ V holds n ≥ 1− ω(x) +

∑
e∈Ex
|e|,

(iv) n(n− 1) ≥ ∑e∈E |e|(|e| − 1).

PROOF. Let GE be the intersection graph of H and let GV be its vertex
graph as defined above. The degree degE in GE of each e ∈ E is, because
of linearity, given by degE(e) =

∑
x∈e(ω(x) − 1) =

∑
x∈e ω(x) − |e|. Since

GE has m vertices we have (∗): degE(e) ≤ m − 1 thus (i). Taking the sum
over all e ∈ E on both sides of inequality (∗) yields m(m − 1) on its right
hand side. On its left hand side we obtain twice the number of edges of GE

thus m(m − 1) ≥ 2|E(GE)|. From this we derive (ii) by observing that each
edge of GE is labeled by exactly one x ∈ V contained in the intersection of
the corresponding hyperedges in H, because H is linear. Consequently, each
x ∈ V contributes exactly ω(x)(ω(x)− 1)/2 many distinct edges to GE, so we
arrive at (ii).

For the degree degV in GV , by linearity, holds for each x ∈ V :

degV (x) =
∑

e∈Ex

(|e| − 1) =
∑

e∈Ex

|e| − ω(x) ≤ n− 1

hence (iii). Taking the sum over all x ∈ V on both sides of degV (x) ≤ n − 1
yields 2|E(GV )| ≤ n(n− 1). Since each edge x− y of GV is labeled by exactly
one hyperedge e containing x, y (immediately following from linearity), each
hyperedge e contributes exactly |e|(|e|−1)/2 distinct edges to GV . Hence, (iv)
is true completing the proof. 2

For convenience, we collect simple results for degrees in vertex and intersection
graph of linear formulas called degree-relations derived in the proof above:

Corollary 8 For C ∈ LIN holds:
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∀x ∈ V (C) : degGV (C)
(x) =

∑
c∈C(x)

(|c| − 1)

∀c ∈ C : degGC
(c) =

∑
x∈c

(ω(x)− 1)

2

For hypergraphs with regular intersection graph, a useful observation is the
following:

Lemma 9 Let H = (V, E) ∈ LIN be loopless such that GE is d-regular and
∀x ∈ V : ω(x) ≥ 2, then ∀x ∈ V : ω(x) ≤ d.

PROOF. By Lemma 7 (i), the degree of a hyperedge is degE(e) =
∑

x∈e ω(x)−
|e|. Thus, by d-regularity we obtain (∗): ∀e ∈ E : d+ |e| = ∑

x∈e ω(x). Now let
y ∈ V (C) be arbitrary and let e be an arbitrary hyperedge containing y (which
must exist by definition). Hence, by (∗), ω(y) = d + |e| − ∑x∈e−{y} ω(x) ≤
d− |e|+ 2 ≤ d, where we used ∀x ∈ V : ω(x) ≥ 2 and looplessness of H, i.e.,
∀e ∈ E : |e| ≥ 2. 2

We obtain a simple class of always satisfiable linear formulas:

Lemma 10 Let C ∈ LCNF be free of unit clauses and free of unique variables
such that GC is 2-regular, then C ∈ SAT.

PROOF. If GC is 2-regular then, due to Lemma 9, ωC(x) ≤ 2, for each
x ∈ V (C). Moreover, ∀c ∈ C : |c| ≥ 2, because HC is loopless. The assertion
follows by Lemma 6, for k = j = 2. 2

Now, let H = (V, E) be an exact linear hypergraph with n := |V | and m :=
|E|, hence GE = Km. A basic result is the following:

Proposition 11 For every H ∈ XLIN holds m ≤ n. 2

The result is a special case of the Fisher-inequality [16]. A short indirect
proof of which can be found in [13]. Obviously, due to this proposition, the
EFL conjecture holds for the class of exact linear hypergraphs. An immediate
consequence of the last result can be derived for arbitrary linear hypergraphs:

Corollary 12 Let H = (V, E) ∈ LIN with intersection graph GE. For each
F ⊆ E such that the subgraph GF of GE induced by F is complete, we have
|V | ≥ |V (F )| ≥ |F |.

8



Prop. 11 has direct impact on SAT for exact linear formulas.

Theorem 13 Every C ∈ XLCNF is satisfiable, and a model for C can be
determined in O(

√
n · ‖C‖) time.

PROOF. Recall that C ∈ XLCNF by definition has no pair of complemen-
tary unit clauses therefore HC ∈ XLIN, similarly every subformula C ′ ⊆ C
is exact linear, and contains no pair of complementary unit clauses, hence for
each C ′ ⊆ C holds HC′ ∈ XLIN. Now consider IC the bipartite incidence
graph of C with vertex set partition V (C) ∪ C. It is easy to see that every
subset C ′ ⊆ C has the neighbourhood NI(C

′) = V (C ′) ⊆ V (C) in IC . Because
of |C ′| ≤ |V (C ′)| = |NI(C

′)| for every subset C ′ ⊆ C, we can apply Lemma 5
yielding satisfiability of XLCNF.

To verify the time bound first observe that for given C ∈ XLCNF, IC can be
constructed in O(‖C‖) time using appropriate data structures. Next formulate
the problem of finding a bipartite König-Hall matching in IC as a network flow
problem: To each edge of IC assign an orientation directed from the variable
partition to the clause partition. Introduce a source vertex joined to each
variable vertex by exactly one directed edge, similarly, introduce a sink vertex
t such that each clause vertex gets exactly one directed arc terminating in t, no
further edges are added. In the network so obtained equipped with appropriate
capacities, Even in [7] provided an algorithm for finding a maximum flow,
which can easily be seen to be equivalent to a König-Hall matching in IC

covering the clause partition. That algorithm runs in O(
√

p · q) time if the
network has p vertices and q edges. Because IC has ‖C‖ edges and n+m ≤ 2n
vertices, the network has at most ‖C‖+2n edges thus in summary, we obtain
O(
√

n · ‖C‖) as running time for finding a model of C ∈ XLCNF with n
variables. 2

4 SAT-complexity of linear formulas

Let us turn back to the class of linear formulas considering its complexity
w.r.t. SAT:

Theorem 14 SAT remains NP-complete when restricted to the class LCNF.

PROOF. We provide a polynomial time reduction from CNF-SAT to LCNF-
SAT. Let C ∈ CNF be arbitrary. We recursively transform C step by step due
to the following procedure:

begin
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(1) while there are c, c′ ∈ C such that |V (c) ∩ V (c′)| ≥ 2 do:
(2) for each variable x ∈ V (c) ∩ V (c′) do
(3) introduce new variables x1, x

′
1 6∈ V (C)

(4) replace x with x1 in c
(5) replace x with x′

1 in c′

(6) C ← C ∪ {{x, x1}, {x1, x
′
1}, {x′

1, x}}
(7) end for
(8) end while
end

Clearly, the transformation of C by the procedure above takes polynomial time
in the number n of variables. Moreover it is obvious that the resulting formula
C ′ is linear because all except one variables occuring in the intersection of any
two distinct clauses are recursively replaced with new variables. It remains to
verify that C is satisfiable iff C ′ is satisfiable. This can be seen immediately
by observing that the clauses added in line (6) ensure logical equivalence of
the replaced variables with the original ones correspondingly, because these
clauses are equivalent to the implicational chain:

x→ x1 → x′
1 → x implying x ↔ x1 ↔ x′

1

independently for each triple x, x1, x
′
1. Note that these equivalences are in-

dependent of the polarities of the corresponding literals as long as the new
variables are assigned the same polarities as those of the substituted ones in
the corresponding clause. It is not hard to see that via these equivalences one
can construct a model of C ′ from a model of C and vice versa if C is satisfiable.
Otherwise, C ′ also is unsatisfiable finishing the proof. 2

The reduction given above adds 2-clauses to a non-linear input formula forc-
ing the newly introduced variables all to be assigned the same truth value in
every model of C ′. Therefore, if we consider the subclass LCNF≥3 of LCNF
where each formula contains only clauses of length at least 3, then the reduc-
tion above does not work. So, the question arises whether SAT restricted to
LCNF≥k, for integer k > 2 remains NP-complete, too.

A guiding result for approaching an answer to this question is formulated
next essentially stating that detecting a first unsatisfiable k-uniform formula
establishes NP-completeness of SAT for the class LCNF≥k:

Theorem 15 For each fixed k ≥ 2, SAT remains NP-complete restricted to
LCNF≥k iff there exists an unsatisfiable k-uniform linear formula.

PROOF. For LCNF≥2 we are done by Theorem 14, because unit clauses
can be ruled out by unit propagation trivially, so let k ≥ 3 be an arbitrary
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fixed integer. It suffices to describe the proof for k = 3, as the procedure
proceeds analogously for any fixed larger k. For the only-if direction, assume
that Γ̂ is an unsatisfiable 3-uniform linear formula. Clearly, we can extract a
minimal unsatisfiable core of that formula, removing one clause of which yields
a satisfiable formula formula pattern Γ having at least one backbone variable.
Recall that a backbone variable x in a satisfiable formula C, by definition, has
the same truth value in each model of C (cf. e.g. [12]).

Now, let CNF≥3 be the set of all CNF formulas containing only clauses of
length at least 3, then clearly SAT is NP-complete for CNF≥3. We now pro-
vide a polynomial time reduction from CNF≥3-SAT to LCNF≥3-SAT. This
reduction is a modification of the procedure used in the proof of Theorem
14. So let C ∈ CNF≥3 be arbitrary and perform the latter procedure on C.
Recall that transforming C into a linear formula C ′, the procedure replaces
overlapping variables with new variables and forces the new variables to be
equivalent with the original ones via implicational chains that are added as
2-clauses. These are the only 2-clauses in the resulting formula C ′ in case
C ∈ CNF≥3, therefore C ′ 6∈ LCNF≥3.

For obtaining LCNF≥3 to be NP-complete it remains to get rid of these 2-
clauses adequately which is done as follows: For each 2-clause ci add a 3-
uniform linear pattern Γi as above to C ′ such that

∀i : V (Γi) ∩ V (C ′) = ∅ and V (Γi) ∩ V (Γj) = ∅, i 6= j

Finally, let xi be a backbone variable in the satisfiable formula Γi which must
exist and is forced to be set in each model of Γi according to l(xi).

So, replace ci with ci∪{l(xi)} ensuring that there are no more 2-clauses in the
resulting formula and moreover the added literals must be set to false ensuring
that the constructed 3-clauses can take their tasks as providing equivalences
with originally overlapping variables in C. Since the Γi’s are independently
satisfiable we are done.

The reverse direction is trivial: Assume, that for a fixed k, no k-uniform mem-
ber of LCNF≥k0 is unsatisfiable. Then already each member of this class is
satisfiable, because longer clauses can be shortened yielding a k-uniform lin-
ear formula which is satisfiable by assumption. 2

Therefore we are posed to the problem to characterize unsatisfiable linear for-
mulas for each k of small(est) size. It is obvious that such candidates specifi-
cally have the property to be minimal unsatisfiable formulas.

Relying on Theorem 15 the answer to the NP-completeness question of SAT
for LCNF≥k is yes:
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Theorem 16 For each fixed k ≥ 2, SAT remains NP-complete restricted to
LCNF≥k.

PROOF. The intention is to provide k-uniform unsatisfiable certificates. The
argumentation is proof-theoretic and basing on resolution; it proceeds as fol-
lows:

Inductively start with an unsatisfiable linear 2-CNF formula which is easy to
obtain as is explained in the next section. For the induction step let k ≥ 2
be fixed and assume that for each j ≤ k an unsatisfiable j-uniform linear
formula exists, that can effectively be constructed. If Ck ∈ LCNF=k is such an
unsatisfiable formula then there exists a resolution proof Pk deriving the empty
clause w.l.o.g. from all clauses of Ck (otherwise concentrate on that fraction
of Ck involved in the proof). The argument now is to enlarge the clauses of
Ck to k + 1-clauses yielding a formula Ck+1 such that linearity is ensured and
moreover the resolution proof for Ck derives the empty clause also for Ck+1.
To that end, first introduce for each clause cj ∈ Ck a new variable xj. Let mk

be the number of clauses in Ck. Each αi ∈ {0, 1}mk defines a clause Li over the

variables {x1, . . . , xmk
} via Li := {xαi

1
1 , . . . , x

αi
mk

mk }, for each 1 ≤ i ≤ 2mk , where
we used x0 := x̄ and x1 := x. Make 2mk variable-disjoint copies of Ck, and for
each copy Ci

k, define the intermediate formula Ci
k+1 := {ci ∪ {li}|ci ∈ Ci

k, l
i ∈

Li}. The desired formula then is Ck+1 :=
⋃2mk

i=1 Ci
k+1 being linear and (k + 1)-

uniform. Performing consecutively resolution proofs P i
k on each Ci

k+1 part of
Ck+1 restricted to the variables is Ci

k yields instead of the empty clause exactly
the corresponding clause Li, for all 1 ≤ i ≤ 2mk , which obviously yields the
empty clause in a final resolution process completing the proof Pk+1 providing
contradictory of Ck+1, and finishing the argumentation. 2

The formulas arising in the proof above grow dramatically in k w.r.t. both
the number of variables nk as well as the number of clauses mk. Indeed, the
construction directly shows that these numbers recursively are determined via:

n1 = 1, m1 = 2

nk+1 = nk · 2mk + mk, mk+1 = mk · 2mk (k ≥ 1)

where for convenience we started with a trivial 1-uniform formula consisting
of 2 complementary unit clauses (that, however, is not a linear formula due
to Definition 3, but serves as a handy basis). So we have an exponential in-
creasement between each two levels k, k + 1. Moreover, it is easy to see that

for a fixed k, both nk, mk are larger than 22·
··
2

, an exponential tower involving
k times the number two.
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A first idea for reducing this rapidly super-exponential growing behaviour is
a modification in the induction step construction of formulas in the proof
above. It rests on the observation that it suffices to introduce only as many
new variables, as there are indepedent sets in the intersection graph of Ck.
Even if the construction above is refined in that manner, the formulas gained
in that way still grow rapidly exponential in k: For k = 3 one gets 84 variables
and 96 clauses, and for k = 4 already 84 ·224 +24 variables and 96 ·224 clauses.

And the basic questions are: Can we provide smaller unsatisfiable uniform
linear formulas? What is the smallest possible for fixed k. Intention of the
next sections is provide first steps towards answering these questions.

5 Combinatorial aspects of uniform linear formulas

Observe that a linear formula C = {c1, . . . , cm} has the property that each
pair of variables occurs at most once. Let P (C) := {p1, . . . , ps} be the set of all
pairs of literals occuring in C. Consider the bipartite graph GP (C) associated
with C having vertex set bipartition P (C)∪C and each literal pair p is joined
to the unique clause of C it belongs to, hence the degree of each p is at most
one. In case of a k-uniform formula C, k ≥ 2, each clause-vertex in GP (C) has

degree k(k − 1)/2. Hence, if C has n variables, we have s ≤
(

n
2

)
and on the

other hand s = m · k(k − 1)/2 implying m ≤ n(n−1)
k(k−1)

. We only have s =
(

n
2

)
if

each pair occurs exactly once, i.e., if the variable graph GV (C) is a clique. So,
we have proven:

Lemma 17 For C ∈ LCNF k-uniform with n variables always holds

|C| ≤ n(n− 1)

k(k − 1)

and equality holds iff GV (C) is complete. 2

Therefore, for fixed n, the possible size of uniform formula shrinks rapidly in
terms of k. On the other hand, in the k-uniform case, n is unbounded, so
we essentially recovered the previously derived quadratic size bound of linear
formulas in n.

Satisfiability of linear formulas can be characterized in terms of matchings in
GP (C): Clearly, P (C) itself is a 2-uniform linear formula, and in case P (C) is
satisfiable then also C is. More generally, by the pigeonhole principle holds
s ≥ m. And the fact that each subformula C ′ ⊆ C again satisfies |P (C ′)| ≥ |C ′|
enables us once more to apply the König-Hall Theorem providing existence of
a matching M of cardinality m covering the clause-vertices in GP (C). Now it

13



is not hard to see that C is satisfiable iff there exists a matching M as above
with the additional property that the 2-CNF subformula of P (C) consisting
of those literal pairs p that are incident to edges of M is satisfiable. So, if C
has m clauses there are exactly [k(k− 1)/2]m König-Hall matchings in GP (C),
and an unsatisfiable formula C forces all [k(k − 1)/2]m subformulas of P (C)
of cardinality m selected by the corresponding matchings to be unsatisfiable.
Observe that the case k = 2 is specific in the sense that it exhibits exactly one
König-Hall matching. Therefore it is easy to construct an unsatisfiable linear
2-uniform formula. A shortest one consists of 6 clauses C = {c1, . . . , c6} where
c1, c2, c3 are determined via x→ y → z → x :

c1 = {x, y}, c2 = {y, z}, c3 = {z, x}

yielding backbone variable x that has to be assigned 0. Similarly, c4, c5, c6 are
determined via x→ u→ v → x:

c4 = {x, u}, c5 = {u, v}, c6 = {v, x}

forcing x to value 1. This is not surprising as in a certain sense the SAT-
complexity of a 2-uniform formula is exhibited by its linear part: Suppose C is
2-uniform but not linear and let c, c′ be two clauses such that V (c) = V (c′) =
{x, y}. Then we claim that c, c′ can be removed from C without affecting
satisfiability status of C. Indeed, we have three cases: (1) c = {x, y}, c′ = {x, y}
forcing y := 1. (2) c = {x, y}, c′ = {x, y}, meaning x⇔y a condition according
to which the resulting formula can be evaluated. And (3) c = {x, y}, c′ =
{x, y}, similarly meaning x⇔y which can be handled as before yielding the
claim.

To construct an unsatisfiable 3-uniform linear formula “at hand” seems not
to be an easy task. Below we will provide a scheme for finding such formulas
also revealing that unsatisfiable formulas are very sparsely distributed. For
obtaining that answer it is useful to consider the combinatorially somehow
extreme class of linear formulas C containing each pair of variables exactly
once, in other words the variable graph is a clique Kn, for n variables in
C. For k-uniform linear hypergraphs of n vertices, i.e. the monotone formula
case, this situation is also known as a Steiner triple system S(2, k, n) [1]. So
we derive some necessary algebraic existence conditions for a k-uniform linear
hypergraph H = (V, E) with complete vertex graph GV . The degree of each
vertex x in GV then is given by

degV (x) =
∑

e∈Ex

(|e| − 1) = (k − 1)ω(x) = n− 1

therefore ω(x) = n−1
k−1

for each vertex, hence H is regular. By the length con-

dition for H we immediately derive k|E| = nn−1
k−1

recovering the assertion of
Lemma 17; more generally:
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Proposition 18 If a k-uniform linear hypergraph, k ≥ 3, with n vertices
admits a complete vertex graph then necessarily n ∈M1 ∪M2 where

M1 = {k + jk(k − 1)|j ∈ N}
M2 = {1 + jk(k − 1)|j ∈ N}

and M1 ∩M2 = ∅.

PROOF. First observe that M1 ∩M2 6= ∅ implies existence of i, j ∈ N such
that

(k − 1)(1 + jk) = ik(k − 1) ⇔ 1 = (i− j)k

which is not possible, hence M1 ∩M2 = ∅. Next, by regularity follows that
k−1 divides n−1, shortly: (∗) k−1|n−1. As |E| = n(n−1)

k(k−1)
must be an integer

it follows with (∗) that k|n. So, we have (1) k|n and k− 1|n− 1. On the other
hand (∗) means n = j(k − 1) + 1 for some positive integer j. Thus

n

k − 1
= j +

1

k − 1
⇒ k − 1|n⇔ k = 2

So, we obtain that for k ≥ 3, k − 1 never divides n. It also follows then that
k(k− 1) does not divide n. Suppose the contrary then n

k−1
= ik ∈ N for some

integer i contradicting that k − 1 cannot divide n. Thus to guarantee that
|E| ∈ N we obtain a second necessary condition (2) k(k − 1)|n− 1.

We claim that either holds (1) or (2). Indeed, suppose (1) and (2) are valid
simultaneously then n = ik and n = 1 + jk(k − 1) for some i, j ∈ N, thus
i = j(k−1)+1/k ∈ N which is equivalent to k = 1 contradicting k ≥ 3. So we
have proven that for k ≥ 3, |E| ∈ N iff either (1) or (2) holds. Obvioulsy (2)
is equivalent to n ∈ M2. It remains to show that (1) implies n ∈ M1 which is
not hard to see: (1) holds iff n = ik = 1 + j(k − 1) for some i, j ∈ N implying
(∗∗): i = j − j−1

k
thus k|j − 1 therefore j = 1 + mk for some m ∈ N. Together

with (∗∗) we obtain

i = 1 + m(k − 1) ⇒ n = ik = k + mk(k − 1)

for some m ∈ N implying n ∈M1 and completing the proof. 2

For k = 3 the conditions in Prop. 18 are equivalent to 6|n − 3 or 6|n − 1
which have shown also to be sufficient by Kirkman, resp. Hanani according
to [1]. For k a prime power and n sufficiently large the above conditions also
are sufficient in an asymptotic sense [20]. Some specific k-uniform linear hy-
pergraphs admitting complete vertex graphs are listed as the corresponding
Steiner triple systems in [1], also confer [11] for a more complete presentation.
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Although the Hanani result hints that there may exist very dense linear for-
mulas, we have no systematic way to explicitly construct and to investigate
them. To circumvent that problem we next provide a scheme for explicitly con-
structing monotone k-uniform linear formulas of a high clause-variable density
serving as candidates for obtaining unsatisfiable formulas. To that end, it is
instructive first to consider k-uniform exact linear formulas having a complete
variable graph. Clearly, a formula containing only one k-clause is exact linear
and satisfies GV (C) = Kk thus we require formulas of at least two k-clauses.

Definition 19 A k-uniform formula B ∈ XLCNF with |B| > 1 is called a
k-block(-formula) if GV (B) = K|V (B)|. Let Bk denote the set of all k-blocks,
and n(k) := 1+k(k− 1). Any subset of a k-block is called a k-block(-formula)
fragment.

Lemma 20 For k-uniform C ∈ XLCNF, with |C| > 1, k ≥ 3, the following
assertions are equivalent:
(i) C is a k-block,
(ii) |V (C)| = |C|,
(iii) ω(x) = k, for each x ∈ V (C).
Moreover, a k-block has n(k) variables.

PROOF. Obviously it suffices to consider the monotone case as we only
touch the combinatorial hypergraph structure disregarding any logical aspect.
We first show (i) implies (ii): If C ∈ Bk then GV (C) is a clique, and for each
variable x we have due to Cor. 8 degGV (C)

(x) = (k − 1)ω(x) = n − 1 where

n := |V (C)|. Therefore ω(x) = n−1
k−1

. Moreover, as C is exact linear also the

intersection graph is complete, hence degGC
(c) = k(n−1

k−1
− 1) = |C| − 1. From

the length condition (∗) nn−1
k−1

= ‖C‖ = |C|k we derive

k(
n− 1

k − 1
− 1) =

n(n− 1)

k(k − 1)
− 1

which is equivalent to

(n− k)(n− [1 + k(k − 1)]) = 0

having the roots n = k corresponding to |C| = 1 and n = 1 + k(k − 1). For
the latter case we have n−1

k−1
= k = ω(x), for each x ∈ V (B). Therefore from

(∗) we immediately obtain |C| = n.

(ii) ⇒ (iii): If the formula is regular meaning ∀x : ω(x) = j then nj = kn by
the length condition thus j = k, and we are done. If the formula is not regular,
we see by the length condition

∑
x∈V (C) ω(x) = k|C| = kn that if ω(x) ≤ k for

each x then already ω(x) = k for each x ∈ V (C). So assume there is a variable
x with r := ω(x) > k ≥ 3. Then C contains at least all r clauses in C(x) each
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having length k. Suppose there was no further clause in C, by assumption
then holds n = 1 + r(k − 1) = |C| = r which has a solution r ∈ N only for
k = 1. So there is at least one further k-clause c contained in C. Because c
must contain exactly one variable distinct to x out of each clause in C(x), we
get that r ≤ k as all other variables in clauses in C(x) are pairwise distinct,
and therefore ω(x) = k, for each x ∈ V (C).

(iii) ⇒ (i): From the degree relation in the variable graph GV (C) we see that
for each x ∈ V (C) holds degGV (C)

(x) = k(k − 1) since ω(x) = k, for each

x ∈ V (C). Thus the variable graph is k(k − 1)-regular. Similarly, from the
degree relation in the intersection graph we obtain

∀c ∈ C : degGC
(c) = k(k − 1) = |C| − 1 ⇒ |C| = 1 + k(k − 1)

Finally, by the length condition we see nk = ‖C‖ = k|C| thus n = |C| =
1+ k(k− 1). Therefore GV (C) with n vertices is (n− 1)-regular, so is complete
and by definition C is a k-block. 2

Thus in a k-block each clause has length k and each variable occurs exactly
k times, moreover the number of variables equals the number of its clauses
equals n(k).

As an example consider a monotone 3-block :

c0 := {x, y1, y2}
c1 := {x, a11, a12}
c2 := {x, a21, a22}
c3 := {y1, a11, a21}
c4 := {y1, a12, a22}
c5 := {y2, a11, a22}
c6 := {y2, a12, a21}

Although we can construct k-blocks also for k = {4, 5, 6, 8, 10}, the question
arises whether a k-block really exists for arbitrary values of k. For the cases
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k = 4, 5, 6 the clauses of corresponding blocks are shown below:

B4 =

x y1 y2 y3

x a11 a12 a13

x a21 a22 a23

x a31 a32 a33

y1 a11 a21 a31

y1 a12 a22 a32

y1 a13 a23 a33

y2 a11 a23 a32

y2 a12 a21 a33

y2 a13 a22 a31

y3 a11 a22 a33

y3 a12 a23 a31

y3 a13 a21 a32

, B5 =

x y1 y2 y3 y4

x a11 a12 a13 a14

x a21 a22 a23 a24

x a31 a32 a33 a34

x a41 a42 a43 a44

y1 a11 a21 a31 a41

y1 a12 a22 a32 a42

y1 a13 a23 a33 a43

y1 a14 a24 a34 a44

y2 a11 a22 a33 a44

y2 a12 a21 a34 a43

y2 a13 a24 a31 a42

y2 a14 a23 a32 a41

y3 a11 a24 a32 a43

y3 a12 a23 a31 a44

y3 a13 a22 a34 a41

y3 a14 a21 a33 a42

y4 a11 a23 a34 a42

y4 a12 a24 a33 a41

y4 a13 a21 a32 a44

y4 a14 a22 a31 a43

, B6 =

x y1 y2 y3 y4 y5

x a11 a12 a13 a14 a15

x a21 a22 a23 a24 a25

x a31 a32 a33 a34 a35

x a41 a42 a43 a44 a45

x a51 a52 a53 a54 a55

y1 a11 a21 a31 a41 a51

y1 a12 a22 a32 a42 a52

y1 a13 a23 a33 a43 a53

y1 a14 a24 a34 a44 a54

y1 a15 a25 a35 a45 a55

y2 a11 a25 a32 a43 a54

y2 a12 a21 a33 a44 a55

y2 a13 a22 a34 a45 a51

y2 a14 a23 a35 a41 a52

y2 a15 a24 a31 a42 a53

y3 a11 a24 a33 a45 a52

y3 a12 a25 a34 a41 a53

y3 a13 a21 a35 a42 a54

y3 a14 a22 a31 a43 a55

y3 a15 a23 a32 a44 a51

y4 a11 a23 a34 a42 a55

y4 a12 a24 a35 a43 a51

y4 a13 a25 a31 a44 a52

y4 a14 a21 a32 a45 a53

y4 a15 a22 a33 a41 a54

y5 a11 a22 a35 a44 a53

y5 a12 a23 a31 a45 a54

y5 a13 a24 a32 a41 a55

y5 a14 a25 a33 a42 a51

y5 a15 a21 a34 a43 a52

The next result relates that question to the number of latin squares for a
given positive integer that mutually satisfy a certain condition. Recall that
a latin square of order s ∈ N is an s × s-matrix where each row and each
column contains each element of S = {1, . . . , s} exactly once (cf. e.g. [17,4]),
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as examples, for s = 5, consider the following matrices:

L5 =



1 2 3 4 5

5 1 2 3 4

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3


, L′

5 =



1 2 3 4 5

4 5 1 2 3

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1


Recall that two latin squares L = (lij)1≤i,j≤s, L

′ = (l′ij)1≤i,j≤s of order s are
said to be orthogonal iff the pairs (lij, l

′
ij) are distinct for all 1 ≤ i, j ≤ s. L5, L

′
5

above are orthogonal as the following matrix providing all corresponding pairs
indicates. 

(1, 1) (2, 2) (3, 3) (4, 4) (5, 5)

(5, 4) (1, 5) (2, 1) (3, 2) (4, 3)

(2, 3) (3, 4) (4, 5) (5, 1) (1, 2)

(3, 5) (4, 1) (5, 2) (1, 3) (2, 4)

(4, 2) (5, 3) (1, 4) (2, 5) (3, 1)


A set of latin squares is called mutually orthogonal, if each different pair of its
elements is orthogonal.

Proposition 21 A k-block exists if and only if there is a set L of k− 2 latin
squares each of order k − 1 such that all K, L ∈ L: K 6= L mutually satisfy
the following condition:

(∗)∀1 ≤ i, j ≤ k − 1,∀1 ≤ p < q ≤ k − 1 : Lip = Kjp ⇒ Liq 6= Kjq

PROOF. Assume that a monotone k-block B exists, then having n(k) clauses
each of length k, let c0 := {x, y1, . . . , yk−1} be its first clause, called the leading
clause. As each variable occurs in k different clauses of B, there are k−1 further
clauses containing x, namely determined by the (k−1)×(k−1)-variable matrix:

Ak =



a11 a12 · · · a1k−1

a21 a22 · · · a2k−1

...
...

...
...

ak−11 ak−12 · · · ak−1k−1


such that the ith clause contains x and all variables in the ith row of Ak.
Observe that the subformula X consisting of all clauses containing x already
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has n(k) = 1 + k(k − 1) variables that means all remaining (k − 1)(k − 1)
clauses of B can only contain these variables. We collect these clauses in
(k−1) subblocks Yi, 1 ≤ i ≤ k−1, each consisting of (k−1) clauses such that
each clause of subblock Yi contains variable yi. W.l.o.g. Y1 can be constructed
by filling the remaining positions in the ith clause of Y1 with the variables in
the ith row of AT

k , the transpose of A. Subblock Y1 is shown below:

Y1 =



y1 a11 a21 · · · ak−11

y1 a12 a22 · · · ak−12

...
...

...
...

...

y1 a1k−1 a2k−1 · · · ak−1k−1


Observe that the formula X ∪ Y1 is exact linear. Each of the remaining sub-
blocks Yi, 2 ≤ i ≤ k − 1, w.l.o.g. looks as follows

Yi =



yi a1i11 a2i12 · · · ak−1i1k−1

yi a1i21 a2i22 · · · ak−1i2k−1

...
...

...
...

...

yi a1ik−11
a2ik−12

· · · ak−1ik−1k−1


where I = (ipq)1≤p,q≤k−1 is a latin square of order k− 1. Obviously, for each i,
X ∪ Y1 ∪ Yi is exact linear. However, to ensure that Yi, Yj, 2 ≤ i < j ≤ k − 1
satisfy mutually exact linearity the corresponding matrices I, J must satisfy
the following condition: for each row r of I and each row r′ of J holds:

rp = r′p ⇒ ∀q < p : rq 6= r′q

which is equivalent to (∗) and clearly guarantees that no pair of variables in
Ak occurs twice in any clause of X ∪ Y1 ∪ · · · ∪ Yk−1. Moreover, as then we
have n(k) k-clauses we have place capacity for exactly n(k)k(k−1)/2 variable
pairs which is identical to the number of variable pairs we can build over n(k)
variables. Therefore by the pigeonhole principle each pair of variables indeed
occurs exactly once in case (∗) holds.

For the reverse direction assume B is a k-block. We have to show that it can be
rearranged such that the above subblock construction can be revealed so that
condition (∗) is implied. Take an arbitrary clause of the block which we assume
to be monotone which serves as the leading clause {x, y1, . . . , yk−1} as above.
Collect the clauses containing a variable of the leading clause forming the k
subblocks each having (k−1) which must exist due to Lemma 20. All variables
in the subblock defined by x form the variable matrix Ak of pairwise distinct
entries. Let subblock Yi be defined such that each of its clauses contains yi in
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the first position which can be ensured by transpositions if necessary. Since y1

must occur together with each member of Ak we can arrange clauses in Y1 such
that AT

k equals its variable matrix. It is not hard to see that by appropriate
permutation we can arrange the clauses of the remaining subblocks so that
they are in accordance with Yi, 2 ≤ i ≤ k − 1, therefore satisfying condition
(∗) for the latin squares of the corresponding 2nd entry indices. 2

Condition (∗) and orthogonality for two latin squares are incomparable in the
sense that in general neither holds that (i): orthogonality implies (∗) nor holds
(ii): (∗) implies orthogonality. As counterexample for (i) take L5, L

′
5 as shown

above. On the other hand, since transposition clearly preserves orthogonal-
ity LT

5 , L′
5
T remain orthogonal, and also satisfy (∗). Moreover permuting rows

preserves (∗) but in general not orthogonality: exchanging the first and the
last row of L′

5
T disturbs orthogonality with LT

5 but preserves (∗), so yields a
counterexample for (ii). However, (∗) and orthogonality for a maximal num-
ber of latin squares are closely related, the connection can be established via
projective planes.

Recall that a finite projective plane is a pair (P,L) where P is a finite set,
interpreted as a set of points, and L is a set of subsets of P , regarded as a set
of lines such that: each pair of lines (clauses) intersects in exactly one point
(means exact linearity), for each two points (variables) there exists exactly
one line containing both, and, for ruling out trivialities, there are four points
of which no three lie on the same line (cf. e.g. [2,17,19]). As combinatorics tells
us, a finite projective plane can be regarded as an exact linear Steiner triple
system having as many base-elements as subsets, and thus as a monotone block
in our terminology. More precisely a monotone k-block B (in its geometrical
interpretation) is nothing else than a finite projective plane of order k − 1
meaning that each point of the plane is geometrically incident to exactly k
lines of the plane (cf. e.g. [2,17,19]). For e.g. the monotone 3-block stated
above corresponds to the prominent Fano (projective) plane if variables are
interpreted as points and clauses as lines. This yields a close connection to
the existence of blocks in terms of latin squares due to the well-established
combinatorial result that a finite projective plane of order s exists if and only
if there exist N(s) := s − 1 mutually orthogonal latin squares of order s (cf.
e.g. [2,17,19]). So, we obtain

Proposition 22 A k-block exists if and only if there exist N(k − 1) = k − 2
mutually orthogonal latin squares of order k − 1. 2

That means existence of N(s) orthogonal latin squares of order s is equivalent
to existence of N(s) latin squares of order s satisfying (∗) (by the pigeonhole
principle there cannot exist more latin squares pairwise satisfying (∗)).
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Now, determining the maximal number N(s) = s− 1 of mutually orthogonal
latin squares of order s, for s ≥ 2, is an extremely hard combinatorial task
about which only little is known. However, it is a well-known result in combi-
natorics [17] that in case the order is a prime power, s = pm, then indeed there
exist N(s) orthogonal latin squares which can easily be constructed over the
corresponding finite Galois field GF(s). Moreover, if pt is the smallest prime
power in the prime factorization of s then there are at least pt− 1 orthogonal
latin squares. Thus existence of an 8-block, e.g., is ensured, because 7 is prime.
But a 7-block does not exist, as there are no two orthogonal latin squares of
order 6, which has been conjectured in the 18th century by Euler and finally
has been shown by exhaustive enumeration. However, it is known that for each
s 6= 2, 6 there are at least two orthogonal latin squares [17].

6 Towards small unsatisfiable linear formulas

This section provides a scheme for constructing somewhat dense linear for-
mulas serving as monotone candidates for obtaining unsatisfiable uniform for-
mulas. On the other hand, we would like to approach smallest contradictory
formulas, meaning that, during our construction, we should only produce as
many clauses as necessary.

First we state an observation limiting the possible density in view of the
considerations stated above. To that end, let epf(p, m) denote the exponent
of prime p in the prime factorization of m ∈ N. For the function n : N → N,
given by n(k) := 1 + k(k + 1), holds:

Lemma 23 For each k ≥ 3 and each i ≥ 1, the smallest prime in the prime
factorization of n(i)(k)− 1 is 2, and moreover for the corresponding exponent
we obtain:

epf(2, n(i)(k)− 1) =

 epf(2, k) , if k ≡ 0 mod 2

epf(2, k − 1), if k ≡ 1 mod 2

Finally, there exist no k ∈ N, i ∈ N such that n(i)(k)− 1 is a prime power.

PROOF. For each fixed k ≥ 3, i ∈ N, we have

(∗∗) : ∀i ≥ 1 : n(i)(k)− 1 = (k − 1)
i−1∏
j=0

n(j)(k)

which can easily be verified via induction on i: For i = 1, we have n(k)− 1 =
k(k − 1) = (k − 1)n(0)(k). Further, via induction hypotheses,
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n(i+1)(k)− 1 = (n(k)− 1)
i−1∏
j=0

n(j+1)(k)

= (k − 1)k
i∏

j=1

n(j)(k)

= (k − 1)
i∏

j=0

n(j)(k)

Observe that all assertions of the lemma immediately are implied by (∗∗): For
each i ≥ 1 and each k ≥ 3, n(i)(k) − 1 contains factor k(k − 1) due to (∗∗),
therefore it is even and 2 is one of its prime factors. It follows that n(i)(k) must
be odd for each i, hence the exponent of 2 in the prime factorization of n(i)(k)−
1 equals the exponent of 2 in the prime factorization of k(k − 1) establishing
the second claim. The last claim is obvious because for k ≥ 3, n(i)(k) − 1 is
a composite of an even and an odd number, thus it is an even number which
cannot be a power of 2, therefore it cannot be a prime power. 2

In view of the argumentation above, we can ensure existence of at least one
latin square satisfying (∗), for each k, providing the next clause-variable-
density result:

Theorem 24 Let k ≥ 3 such that Bk 6= ∅, and B ∈ Bk can effectively be
computed, then one can explicitly construct, for each i ∈ N, a k-uniform linear
formula Ci(k) such that

|Ci(k)|
|V (Ci(k))|

∈ Ω(2.9i−1) ∩O(3.2i−1)

PROOF. To prove the assertion, let k ≥ 3 be such that Bk is not empty
and let B1 ∈ Bk be a corresponding monotone k-block that by assumption
can be computed effectively, e.g. if k − 1 is a prime power (cf. Prop. 21).
Clearly B1 has n(k) variables and clauses. We build a monotone clause cB1

of length n(k) containing all variables of V (B1) with x as the first variable
and use it as signature for our block B1 canonically as described above. Now
we interprete cB1 as the leading clause of a n(k)-block fragment denoted as
B2. We only can ensure a block fragment because we do not know whether
Bn(k) is non-empty. In any case we obviously can add n(k)-clauses to cB1 such
that the subblock X for B2 is complete, each of its clauses again is regarded
as the signature of another k-block, which pairwise have only variable x in
common. Building X we obtain the (n(k) − 1) × (n(k) − 1) variable matrix
An(k) for our n(k)-block the transpose of which delivers the next subblock Y1

of B2 as shown in the proof of Prop. 21. Now we can always find at least
one additional subblock Y2 of B2 (equivalent to the guaranteed latin square

23



as argued above): Simply perform a cyclic shift of order i to the ith column
of AT

n(k) for 0 ≤ i ≤ n(k) − 2 guaranteeing linearity of B2 as is easy to

verify. By construction follows that each clause of B2 delivers n(k) blocks
B1 which pairwise have at most one variable in common thus expanding B2

that means resolving the signatures into k-blocks from Bk yields a k-uniform
linear formula C2(k) of n(2)(k) = n(n(k)) variables and [1 + 3(n(k)− 1)]n(k)
clauses. The procedure described can be continued inductively by constructing
an n(i)(k)-block fragment Bi consisting of 1 + 3(n(i−1)(k) − 1) clauses each
of length n(i−1)(k), for i ≥ 2, and each is regarded as the signature of an
n(i−1)(k)-block fragment Bi−1 such that again all these signature-clauses have
exactly one variable in common yielding a hierarchie Bi, i ≥ 1, where B1 :=
B ∈ Bk. Expanding Bi thus provides a k-uniform linear formula Ci(k) of
n(i)(k) variables and [1 + 3(n(i−1)(k)− 1)]|Ci−1(k)|, many k-clauses, for i ≥ 2.
Again yielding a hierarchy of k-uniform linear formulas Ci(k), i ≥ 1, where
C1(k) := B.

It remains to settle the claim on the clause-variable density di(k) := |Ci(k)|
|V (Ci(k))| ,

which is shown by induction on i ≥ 1. For i = 1, we have C1(k) := B ∈ B(k)
thus d1(k) = n(k)/n(k) = 1. Now assume the claim holds for all positive
integers ≤ i, for fixed i ≥ 2. Then

di+1(k) =
1 + 3[n(i)(k)− 1]

1 + n(i)(k)[n(i)(k)− 1]
|Ci(k)|

≤ 1 + 3[n(i)(k)− 1]

n(i)(k)− 1
· |C

i(k)|
|V (Ci(k))|

= (3 + [n(i)(k)− 1]−1)di(k)

< 3.2 · di(k)

because n(i)(k) ≥ n(k) = 7, and by the induction hypotheses we obtain
di+1(k) ∈ O(3.2i). Similarly, for the remaining bound we derive:

di+1(k) =
1 + 3[n(i)(k)− 1]

1 + n(i)(k)[n(i)(k)− 1]
|Ci(k)|

>
3[n(i)(k)− 1]

[n(i)(k)]−1 + n(i)(k)− 1
· |C

i(k)|
|V (Ci(k))|

=
1

1/3 + 1/[3n(i)(k)(n(i)(k)− 1)]
di(k)

= 3

(
1 +

1

n(i)(k)(n(i)(k)− 1)

)−1

di(k)

> 2.9 · di(k)

where again for the last inequality we used n(i)(k) ≥ n(k) = 7 from which the
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claim follows by the induction hypotheses. 2

Due to lemma 23, for k = 4, 5, for instance, providing minimal prim power 22,
on each higher level of the hierarchy above, we even can construct 4 − 1 = 3
additional latin squares, hence obtaining 5 subblocks in the hierarchy defined
in the proof of Theorem 24. More generally, in view of Lemma 23, let e(k) :=
2tk − 1 ≥ 1 where tk = epf(2, k) resp. tk = epf(2, k − 1) according to whether
k is even resp. odd, then we may assume to be able to effectively construct at
each level e(k)+ 2 ≥ 3 subblocks. Thus arguing analogously as in the proof of
Theorem 24, i.e., replacing 3 with e(k) + 2 in the corresponding inequalities,
we obtain the following stronger version of the theorem:

Corollary 25 Let k ≥ 3 such that Bk 6= ∅, and B ∈ Bk as well as e(k) :=
2tk − 1 additional subblocks at each level can effectively be computed, then for
each i ∈ N, one can explicitly construct a k-uniform linear formula Di(k) such
that

|Di(k)|
|V (Di(k))|

∈ Ω([0.9(e(k) + 2)]i−1) ∩O((e(k) + 2.2)i−1)

2

For the case k = 3, using the SAT-solver described in [3] we have run sev-
eral numerical experiments by randomly assigning negations to variables in
the 3-uniform linear formula C2(3) containing 133 clauses and 43 variables
constructed as shown in the proof above. The experiments supplement the
intuition that unsatisfiable formulas are distributed very sparsely: Among
354442000 formulas over the monotone C2(3) we only found 488 unsatisfiable
ones. From one such unsatisfiable formula we extracted a smaller minimal
unsatisfiable formula C consisting of 81 clauses and 43 variables. Removing
clause (1, 38,−32) from C yields a satisfiable formula C ′ possessing six back-
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bone variables, namely 0, 1, 21, 32, 38, 39:

(-42, 14, 21) (-42, 39, 38) (-18, 1, -12) (-18, -14, 15)

(42, 18, 24) (-0, 24, 23) (-2, 24, -25) (-1, 30, 24)

(40, -0, -39) (40, -33, -2) (40, 41, 38) (42, -40, 37)

(-2, 37, -36) (18, -40, 19) (-37, 19, -13) (-33, 19, 11)

(-34, -22, 10) (-22, -29, -2) (-24, -19, -22) ( 16, 0, 15)

( 13, -17, 15) (-14, -16, 17) (-40, 22, -16) (-16, 34, -28)

( 22, -0, -21) ( -0, 26, -25) ( 42, 0, -41) ( 34, 2, -41)

(-24, 21, 20) (-27, -2, 20) (-23, 2, -30) ( 22, -20, -23)

(-38, 30, 9) (-19, 23, 21) (-15, 21, -39) ( 21, -2, -28)

(-17, 29, -35) ( -1, -17, -11) ( 39, -9, 27) (-24, 17, 39)

(-21, -1, -27) ( 16, -1, 10) ( 0, 27, 28) ( 22, 1, 28)

( 28, -26, 29) ( 0, -10, -9) (-40, -28, -10) ( 17, 10, -2)

(-39, 2, 32) ( 33, 32, 36) ( 14, 26, 32) ( 1, -14, 8)

(-19, 1, 25) ( 17, -32, 25) ( 1, 13, -7) (-37, -25, -7)

( 10, 7, 12) ( -8, 12, 9) ( 13, -27, -34) ( 41, -12, -27)

(-15, 27, 33) ( 0, -33, 34) (-32, -34, 35) (-20, 1, 26)

(1, 38, -32 ) (-18, 16, -13) (-1, 40, -34) (0, -38, 37)

(2, 19, -26) (-37, 22, 15) ( -0, 1, 2) (-19, 0, 20)

( 16, 23, -38) ( 18, 0, -17) ( -1, 33, 39) ( 28, 25, -30)

( 16, -2, -9) (-20, -32, 8) ( 2, 7, 14) (-21, 33, 9)

( 27, 30, 26)

From C ′, in turn, we extracted a smaller satisfiable formula Γ shown below of
69 clauses and 43 variables having only 0 as a backbone variable.

(-42, 21, 14) ( -0, 40, -39) ( -0, 22, -21) ( -0, 1, 2)

( -0, 24, 23) ( 42, 0, -41) ( 40, -1, -34) ( 41, 40, 38)

( 0, 37, -38) ( 42, -40, 37) ( -2, -36, 37) (-40, 19, 18)

(-33, 11, 19) (-37, 19, -13) (-40, 22, -16) ( 1, 22, 28)

(-23, 22, -20) (-19, -22, -24) (-24, 21, 20) ( 39, -24, 17)

( 25, 28, -30) ( 25, -32, 17) ( 1, 13, -7) (-37, -25, -7)

( -2, -28, 21) ( -2, -9, 16) ( 24, -25, -2) ( -2, 20, -27)

( -1, 16, 10) ( 7, 10, 12) (-40, -10, -28) ( 34, -28, -16)

( 30, 26, 27) ( 39, 27, -9) ( 1, -18, -12) ( 41, -27, -12)

( 12, 9, -8) (-15, 21, -39) (-19, 21, 23) (-27, -21, -1)

( 39, -1, 33) ( -1, -17, -11) ( 9, -21, 33) ( 33, 32, 36)

(-27, -34, 13) (-17, 13, 15) (-34, 35, -32) ( 8, -20, -32)

( 32, 26, 14) ( 28, -26, 29) (-17, 29, -35) ( 0, 16, 15)

(-16, 17, -14) ( 0, -17, 18) ( 2, -23, -30) (-18, 15, -14)

( -0, 26, -25) (-37, 22, 15) (-22, -34, 10) ( 24, -1, 30)

( 40, -33, -2) (-19, 1, 25) ( 0, 28, 27) ( 0, -33, 34)

( 2, 19, -26) (-22, -2, -29) ( 0, -10, -9) ( 1, -20, 26)

(-13, 16, -18)

Considering the next case, namely k = 4, the monotone skeleton C2(4) of
level 2 of the Ci(4) hierarchy has n(2)(4) = 157 variables and [1 + 3(n(4) −
1)]n(4) = 481 4-clauses. Computationally we found no unsatisfiable candidate
over C2(4). Therefore we computationally augmented the subblocks of C2(4)
preserving its linearity and maintaining the number of 157 variables achieving
a new monotone linear 4-uniform CNF formula of 1706 clauses. A minimal
unsatisfiable formula can be extracted from C with 1653 to 1658 clauses.
Observe that the complete 13-block, if existing, would consist of n(2)(4)·n(4) =
2041 4-clauses over 157 variables. Thus we obtained an unsatisfiable witness
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formula over the new skeleton explicitly stated in the appendix.

For k = 3, 4, 5, 6, the following tables depict, the number of variables in the
first levels i = 1, 2, 3, 4, and the number of clauses in the corresponding formu-
las Ci(k) as composed on the basis of (signature) block fragments due to the
hierarchy described above. The fourth column shows the number of clauses
that can be achieved by recursive augmentation of the correspondingly aug-
mented subblocks of Ci(k) at each hierarchy level, maintaining linearity. The
last column contains the maximally possible number of clauses that would be
possible if at each level of the hierarchy the whole (signature) block exists,
which are

∏i
j=1 n(i)(k) in level i.

Level #variables |Ci(3)| |Ci(3)augm| |Ci(3)full|

1 7 7 7 7

2 43 133 281 301

3 1807 16891 482317 543907

4 3.3 · 106 9.2 · 107 ? 1.8 · 1012

Level #variables |Ci(4)| |Ci(4)augm| |Ci(4)full|

1 13 13 13 13

2 157 481 1706 2041

3 24493 225589 ? 4.9 · 107

4 5.9 · 108 1.7 · 1010 ? 2.9 · 1016

Level #variables |Ci(5)| |Ci(5)augm| |Ci(5)full|

1 21 21 21 21

2 421 1281 6153 8841

3 176821 1615341 ? 1.6 · 109

4 3.1 · 1010 8.6 · 1011 ? 4.8 · 1019

Level #variables |Ci(6)| |Ci(6)augm| |Ci(6)full|

1 31 31 31 31

2 931 2821 19883 28861

3 865831 7.9 · 106 ? 2.5 · 1010

4 7.5 · 1011 2.1 · 1013 ? 1.9 · 1022
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7 Concluding remarks and open problems

The class LCNF of linear formulas has been introduced and SAT restricted to
it has been shown to remain NP-complete. So, the first open problem arising
naturally from the point of view of worst-case exact algorithmics is whether
we can provide an algorithm solving LCNF-SAT faster than in O(2n) steps.

In view of the large formulas that are produced in the resolution-based proof
theoretic proof of NP-completeness of the k-uniform classes, a scheme for
constructing smaller formulas was provided, for at least k = 3, 4. However,
the challenging question, how smallest linear formulas in LCNF=k can be
characterized and constructed, remains open. Further, can we design exact
algorithms for these problems that have non-trivial worst-case bounds?

Moreover, it should be investigated whether there can be found alternative
methods for showing NP-completenes of LCNF≥k-SAT than those provided in
this paper.

We have some implications towards polynomial time solvability regarding SAT
of certain classes of linear formulas C that are characterized by the graph
GP (C). Observe that the extracted 2-CNF P (C) is linear and if it is satisfiable
then also C is satisfiable. Otherwise P (C) contains an unsatisfiable linear
subformula which is determined by implicational double-chains of the form

x→ l1 → l2 → · · · → lp1 → x, x→ l′1 → l′2 → · · · → l′p2
→ x

where li, 1 ≤ i ≤ p1, resp. l′i, 1 ≤ i ≤ p2, are literals over distinct variables,
the length of the double-chain is p := p1 + p2 + 2 as it is equivalent to p lin-
ear 2-clauses. Defining the class LCNF(p) as consisting of all linear formulas
such that P (C) has a longest implicational double-chain of length p, we can
decide satisfiability for members of LCNF(p) in O(poly(p)n2p) time. A simple
corresponding algorithm proceeds as follows: Observe that an input formula
C ∈ LCNF(p) is unsatisfiable iff there is a subformula C ′ of C of cardinal-
ity p for which each König-Hall matching in GP (C′) selects an unsatisfiable
subformula of P (C ′); via usual matching algorithms that can be checked in
polynomial time. Thus checking all O(mp) p-subformulas C ′ accordingly yields
O(poly(p)mp) time. Since m ≤ n2 the claim follows. In that context we pose
the question whether LCNF(p)-SAT is fixed parameter-tractable [5] w.r.t. pa-
rameter p.

Moreover, from the structural point of view, we rise the question whether a
deeper insight into SAT for linear formulas can have impact on the combina-
torics of latin squares and finite projective planes.

Generalizing the definition of linear CNF formulas having the defining prop-
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erty that each two distinct clauses have 0 or 1 variable in common, one can
consider I-intersecting formulas, where I is a proper subset of {0, 1, . . . , r},
for a fixed r ∈ N:

∀c, c′ ∈ C, c 6= c′ : |V (c) ∩ V (c′)| ∈ I ⊂ {0, 1, . . . , r}

Regarding, for instance the 3-CNF case, interesting classes of formulas ap-
pear like those where e.g. each two clauses c 6= c′ have variable-intersection
either 0 or 2, resp., 1 or 3. The case 0 or 3 is trivial as one only has to detect
whether there exist three variables over which the formula contains all 8 po-
larity patterns, which is the only case that such a formula can be unsatisfiable.
Observe that in each case where I = {s}, for fixed s and all clauses are re-
quired to overlap pairwise in exactly s variables, allows SAT-decision in linear
time. Indeed, then either variables sets of all clauses are identical of size s.
Or an argumentation basing on König-Hall matchings as in the exactly linear
case applies, since by the Fisher inequality always m ≤ n is ensured, for the
number of clauses, resp., variables in the formula.
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A A small 4-uniform linear unsatisfiable formula

Below we state an unsatisfible 4-uniform linear formula of 157 variables and
1706 clauses.

(-3, 11, -4, 9) (-3, -13, 27, -38) (-3, -16, -30, 41) (-3, -17, -28, 42)

(-3, 31, -45, -20) (-3, -48, -34, -23) (-3, 97, -111, -86) (-3, 7, -5, -12)

(-3, 53, -78, -64) (-3, -33, -44, -19) (-3, 87, 98, -109) (-3, -123, 145, 134)

(-3, -116, -91, 105) (-3, 49, 63, -74) (-3, 70, 59, 84) (-3, -80, 55, -69)

(-3, 83, 72, -58) (-3, 90, -112, 101) (-3, -68, 79, -57) (-3, -73, 62, -51)

(-3, 77, -66, -52) (-3, -82, -71, 60) (-3, -92, 103, 117) (-3, 118, 107, -96)

(-3, -125, -150, 136) (-3, 151, 140, 129) (-3, -119, 108, -94) (-3, -146, -121, 135)

(-3, -148, 126, -137) (-3, -155, -144, -130) (-138, -82, -111, -47) (-138, -70, 39, 146)

(-138, 129, -147, -4) (-138, -74, -28, 107) (-138, -152, -121, 19) (-138, -81, 110, -23)

(-138, -72, 20, 99) (-138, -96, 37, 80) (-138, 101, 16, -117) (-138, 103, -29, -69)

(-138, -6, -119, -127) (-138, -64, 104, 34) (-138, -10, 122, -113) (-138, -93, 156, 51)

(-138, -54, 114, 42) (-138, -68, -108, 26) (-138, -116, -15, -130) (-138, 90, -30, 78)

(-138, 120, 123, -7) (-138, 71, -118, -41) (-138, -43, 88, 154) (-138, -134, 143, -139)

(-149, 12, 129, 118) (-149, -143, -121, 21) (-149, -110, -18, -83) (-149, -133, 40, -75)

(-149, -22, -122, -144) (-149, 151, -156, 147) (-149, 119, 19, 141) (-149, 36, -117, 80)

(-149, 47, -106, -85) (-149, 131, 4, 140) (-149, -89, 65, 41) (-149, -37, 126, 91)

(3, 138, 149, 124) (133, -118, -4, 124) (124, -12, 141, -104) (144, -30, -83, 124)

(-117, -134, 5, 124) (-45, 124, -98, -84) (-39, 124, -68, 154) (32, 124, -71, 111)

(143, -116, 124, -17) (155, 124, -49, 91) (142, 109, 124, 15) (31, 124, 95, 77)

(-78, -99, 124, 21) (40, 124, 100, 76) (88, 52, 124, -16) (131, 124, 129, 123)

(149, -0, -150, 148) (-0, 134, 133, -135) (-0, -75, 74, 73) (-0, -30, -29, 28)

(-0, -59, -60, -58) (-0, -120, -119, 118) (-0, -108, -106, 107) (-0, -66, 64, 65)

(-0, 22, -24, -23) (-0, -112, 113, 114) (-0, 100, 101, -102) (-0, 86, 85, 87)

(-0, -156, 155, -154) (-0, -11, 12, 10) (-0, -49, -50, -51) (-0, 105, 104, -103)

(-0, 71, 70, 72) (138, -0, 137, -136) (-0, 14, -15, -13) (-0, 16, -18, -17)

(-0, -37, -39, -38) (-0, 40, 41, 42) (-0, 80, -81, 79) (-0, 140, -141, -139)

(3, 0, -1, 2) (138, -1, -126, -150) (149, -1, 125, 137) (-1, -78, -66, -54)

(-1, -119, 107, -95) (-1, -102, -90, 114) (-1, 89, -113, 101) (-1, -82, 70, 58)

(-1, -86, -98, 110) (-1, 64, -76, 52) (-1, 151, -139, -127) (-1, -129, -153, 141)

(-1, 135, -147, -123) (-1, -92, -116, -104) (-1, 67, -79, -55) (-1, -49, -73, -61)

(-1, 132, 144, -156) (-1, 83, -59, -71) (-1, 39, -27, -15) (-1, 131, 155, -143)

(-1, 8, -5, -11) (-1, 122, 146, 134) (-1, -33, -45, -21) (-1, 75, -63, -51)

(-1, -68, 56, -80) (-1, -20, -44, 32) (-1, -9, 12, -6) (-1, 10, 7, -4)

(-126, -152, 2, 139) (-124, 0, -126, 125) (-126, 89, 112, 24) (-126, -146, -13, -144)

(-126, 8, -134, 116) (-126, 6, 133, -117) (-126, 14, 141, 111) (-126, 46, -80, -153)

(-126, -132, -129, -121) (-126, -156, 70, -43) (-126, 33, -147, 83) (-126, 66, 30, -114)

(-126, -101, -76, 38) (-126, 31, -81, -104) (-126, 131, -122, -127) (-126, 22, -98, 69)

(-126, 136, 5, 119) (-126, 9, -109, 105) (-126, -47, -74, 100) (-126, 113, 61, -34)

(-126, -143, -15, 145) (-126, -54, -18, 90) (-126, -130, 123, 128) (-126, -107, -93, -11)

(-126, -106, 20, 75) (-126, 155, 41, 68) (-124, 1, -136, -148) (-136, -39, -102, -55)

(-136, -114, -15, -108) (-136, 107, -26, -60) (-136, 133, 142, -139) (149, -136, -2, 123)

(-136, 64, -16, -100) (-136, 109, -75, -24) (-136, -86, 113, 36) (-136, 110, 57, 44)
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(-111, 147, -15, 75) (-44, 155, -113, 75) (34, -98, 52, 75) (84, 79, -77, 75)

(-63, -127, 30, -97) (25, -145, -49, -97) (-36, -56, -129, -97) (1, 109, 85, -97)

(-94, -77, -14, -97) (28, -122, -75, -97) (-6, -72, -97, 90) (-54, 81, -7, -61)

(-54, 16, -72, 35) (-111, 2, -85, 98) (-103, 116, 2, -90) (83, 2, -57, -70)

(-87, 2, -113, -100) (-67, 82, 13, 51) (55, 13, -77, -71) (112, -23, -127, 82)

(-127, -78, 113, -20) (-124, 130, -127, -121) (-36, 66, -49, -7) (66, 105, -144, 14)

(73, 14, -89, -57) (62, -56, -7, 78) (80, -85, -7, -100) (132, -145, -140, -7)

(-75, -7, -71, -90) (154, 30, -129, -86) (136, -111, 30, -61) (1, -18, 30, -42)

(22, -8, 30, -52) (-44, -14, 7, 30) (26, -31, 30, -35) (143, -94, -153, 51)

(11, 21, -30, 51) (-4, -35, 51, 61) (-69, -18, -76, 51) (62, -69, 65, -70)

(62, -46, -113, -156) (-150, 66, -90, -42) (-107, 81, 121, -42) (-6, 81, 71, 89)

(-148, 147, 155, -153) (138, -148, -8, 131) (108, -148, -56, -30) (41, -148, 86, -144)

(-29, -98, 57, 128) (-63, 7, 35, 52) (-107, 65, 20, -85) (-92, 95, -85, -89)

(-124, 38, 65, -152) (116, 80, 20, -152) (0, -151, -153, 152) (3, 139, -153, 128)

(22, -77, 131, -104) (59, 95, -23, -131) (95, -15, 70, -52) (95, -91, 86, 90)

(116, 109, 119, -113) (-10, -135, 117, -131) (-31, -87, 154, 117) (11, -140, 119, 121)

(-8, 80, -70, -90) (-103, 38, -77, 129) (-64, 38, 155, 90) (38, 102, -57, -35)

(-120, 38, 154, -71) (-151, -36, -110, 71) (-23, -50, -89, 128) (-31, 156, -89, -121)

(12, -75, -70, -89) (0, -88, -90, -89) (28, 58, 102, -121) (-8, 58, -77, 86)

(-151, 58, 113, -42) (-27, 66, -118, -131) (-15, 12, 35, -45) (-15, -69, -50, -90)

(-124, -8, 105, 119) (26, -67, 129, -100) (-36, 154, -50, 102) (-94, 89, 93, -86)

(-103, 89, 20, 61) (-8, 97, 93, -113) (28, -61, 129, 98) (108, 98, -100, -104)

(139, -56, 102, -45) (59, 154, 113, 45) (12, 47, -14, -51) (-87, 47, 152, -61)

(-4, 79, 85, 70) (147, -40, -113, 70) (0, -76, -77, -78) (139, 21, -61, -100)

(22, 121, -71, -100) (83, 5, -100, 90)
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