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Abstract

Jordan curves can be used to represent special subsets of the Euclidean plane, either the (open) interior of
the curve or the (compact) union of the interior and the curve itself . We compare the latter with other
representations of compact sets using grids of points and we are able to show that knowing the length of a
rectifiable curve is sufficient to translate from the grid representation to the Jordan curve.
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1 Introduction

In computable analysis, several definitions of computability of subsets of R
n have

been discussed in the near past, especially for bounded sets, e.g. [6,7,8], [13], [3],
[16,17].

Many of theses definitions apply at the same time to a set S and its closure
S, so we will restrict ourselves to compact (i.e. bounded and closed) sets. Here
a representation using grids of points with a decreasing Hausdorff distance to the
represented set is of interest.

For the special case of the Euclidean plane, another non-equivalent representa-
tion of special compact sets can be based on Jordan curves, although the papers

1 Email: mueller@uni-trier.de
2 Research was partially supported by the DFG project 446 CHV 113/240/0-1
3 Email: hsszxs@mail.sysu.edu.cn
4 Research was partially supported by the NSFC projects under Grant No. 60573011, 10410638 and a
MOE project under grant number 05JJD72040122

Electronic Notes in Theoretical Computer Science 221 (2008) 191–206

1571-0661© 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.017
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82340098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mueller@uni-trier.de
mailto:hsszxs@mail.sysu.edu.cn
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


by Chou, Ko and Yu [6],[7],[8],[13] rather use the curves to represent their open
interior.

During the CCA conference 2007, two independent papers [14],[17] have been
presented showing results that were quite similar although based on the non-equivalent
approaches via grids or Jordan curves. In this paper we show that using the (finite)
length of a Jordan curve as additional information allows the translation between
the corresponding representations. This helps to explain the similarities. In con-
trast to [6],[7],[8],[13] where the emphasis was on computational complexity, we
concentrate on uniform solutions, i.e. on possible reductions between the different
representations.

We will use the following notations and definitions to specify the computational
model. Details have been omitted, as we don’t consider computational complexity.

• The set B := {0, 1} will be used as basic alphabet for all strings.
• Based on an encoding of the set {0, 1,#} by pairs of bits, with # acting as a

delimiter, we will use naive bijections (B∗)n ↔ B
∗ and (B∗)∗ ↔ B

∗.
• Natural numbers will be written in binary, i.e. as strings from B.
• Dyadic numbers are defined as D = {z · 2−n | z ∈ Z, n ∈ N}, they are a dense

subset of R. We let Dn = {z ·2−n | z ∈ Z}. Here we will use an encoding by words
from {+,−}◦B

∗ ◦{•}◦B
∗ (for sign, integer part, position of the fractional point,

and the fractional part itself; so obviously denoting a dyadic number). These
words again can easily be encoded using strings from B

∗.
• F (M) denotes the finite subsets of a set M : We will especially use the notation

F (D2) for the finite sets of dyadic points in the plane and F (D2
n) for the finite

sets of dyadic points on a grid with width 2−n.
• The Euclidean distance of points in R

n will be written as dist(x, y).
• Open balls in R

n with center x ∈ R
n and radius ε ∈ R

+ will be written as
B(x; ε) := {y ∈ R

n | dist(x, y) < ε}. This includes the special cases of open discs
in R

2 and open intervals in R.
• Let B(Dn) := {B(d; ε) | d ∈ D

n, ε ∈ D, ε > 0} be the set of basic open balls in
R

n. Again a naive encoding with a delimiter symbol is assumed.
• As computational model we will use oracle Turing machines, with input alphabet

and oracle alphabet B. Formally, oracles for and the functions computed by
these machines are of type φ :⊆ B

∗ → B
∗. In general, we will implicitly use naive

notations like above and directly work with functions like φ :⊆ N → D or even
like φ :⊆ F (D2) → N × B(D, n).

• For any set S ⊆ R
n , let ∂S denote the boundary of S, i.e., the set of all points

z ∈ R
n such that any open ball B(z; ε) around z contains both points in S and

points not in S. int(S) denotes the interior of S; ext(S) denotes its exterior.
• Let S := ∂B((0, 0); 1) = {x ∈ R

2 | dist(x, (0, 0)) = 1} be the unit circle in R
2.

Let σS : [0; 1] → S be defined as σS(t) = (sin(2πt), cos(2πt)).
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• The Hausdorff distance of sets is denoted by

distH((X, Y ) = max{ sup
x∈X

inf
y∈Y

dist(x, y), sup
y∈Y

inf
x∈X

dist(x, y) }

We assume that the reader has some (basic) knowledge about TTE [16], nevertheless
we repeat some definitions here:

• A representation of a set M is a partial surjective function δ : ⊆(⊆B
∗ → B

∗) → M .
• The pairing of words φ, ψ is denoted by 〈φ, ψ〉 Here φ and ψ may have finite or

infinite lengths. We will extend this notion to the represented sets.
• 	 will be the representation of real numbers, where a name φ of x ∈ R consists

of a list {φ(i) | i ∈ N} of open intervals Oi with dyadic endpoints, where x ∈ Oi

and the diameter of Oi is ≤ 2−i. We will use a similar representation 	n for R
n,

now consisting of open balls with dyadic center and dyadic diameter.
• 	< is a representation of real numbers (including infinities) using approximations

from the left: For x ∈ R = R∪ {−∞,+∞} we let 	<(φ) = x ⇔ {φ(n) | n ∈ N} =
{d ∈ D | d < x}

• 	> represents R is a similar way, but now using approximations from the right.

Computable translations between different representations ρ1, ρ2 will be expressed
as reducibilities ‘ρ1 ≤ ρ2’; the equivalence ‘ρ1 ≡ ρ2’ expresses reducibility in both
directions. ‘ρ1 ≤t ρ2’ denotes a topological reduction, i.e. the translation is only
shown to be continuous, but not necessarily computable.

2 Jordan curves

Jordan curves are continuous functions γ, usually from [0; 1] to R
2, that are closed

(i.e. γ(0) = γ(1)) and furthermore one-to-one (with exception of the identity at the
endpoints). They have been studied for about 200 years now (already Bolzano tried
a proof of the Jordan curve theorem).

The topological properties of these curves (e.g. the Jordan-Schönflies theorem,
see below) suggest an additional approach: Instead of functions γ : [0; 1] → R

2 we
could use functions γ : S → R

2 that additionally are one-to-one, i.e. the curves could
also be viewed as images of the unit circle under a continuous injective function.

S is a compact and, moreover, recursive subset of R
2. The same obviously holds

for the closed interval [0; 1] ⊆ R. So, using the notation of [16](153ff), it is near at
hand to use the following representations in connection with Jordan curves:

Definition 2.1

• Let C(S, R2) := {f : ⊆R
2 → R

2 | f continuous and dom(f) = S} be the set of
all continuous partial functions from R

2 to R
2 with domain S. In the same way

define C([0; 1], R2).

• As representations for C(S, R2) or C([0; 1], R2) we will use δS→ and δ
[0;1]→ , which

are standard representations of these functions spaces (from [16]).
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Using these representations, a function is essentially encoded as a list of pairs of
open balls (Oi, Ui) with certain convergence properties, for details see [16].

From time to time, it will be convenient to switch between C([0; 1], R2) (used e.g.
in [12,14]) and C(S, R2). As we are only considering closed curves, this can be done
using the simple transformation σS : [0; 1] → S defined by σS(t) = (sin(2πt), cos(2πt)).
In the following, γ will always be from C(S, R2), while we use γ to denote a function
from C([0; 1], R2).

Many proofs concerning Jordan domains rely on the Jordan curve theorem. For
our purpose, we need to use a rather strong version of this theorem, namely the
Jordan-Schönflies theorem. A suitable formulation can e.g. be found in [15](Thm
40.15); a translation of this version reads as follows:

Theorem 2.2 (Jordan-Schönflies) Each Jordan curve C partitions the plane
into exactly two parts. Each homeomorphism from C onto the unit circle S can
be extended to a homeomorphism of the plane onto itself, where the interior of C

is mapped onto the interior of S and the exterior of C is mapped onto the exterior
of S.

In our case, we do not use functions from C to S, but from S to C. As we are
dealing with homeomorphisms, this is not really a problem, as they are bijective
and continuous in both directions. So we may use the following property:

Corollary 2.3 For any Jordan curve γ : S → R
2 an extension Γ : R

2 → R
2 of γ

exists which is a homeomorphism.

Of course, this homeomorphic extension is not uniquely determined. In this
context, we want to mention the following papers treating Jordan curves from a
constructive view:

• Berg et.al. [2] consider a constructive version of the (plain) Jordan curve theorem,
which unfortunately is not enough for our considerations: A point x outside of the
curve and another point y inside of the curve can be constructed from the curve,
and that additionally, for every point z not on the curve, there is a polygonal
path not touching the curve that either connects x and z or y and z.

• Hertling [10] shows an effective version of the Riemann open mapping theorem,
a theorem that can be used to prove the Jordan curve theorem. This gives us a
homeomorphism between the interior of the curve and the interior of S considered
as sets, and doesn’t reflect the curve itself: If γ is not differentiable, for example,
we will of course not be able to get a holomorphic extension to R

2, which is a
core property of that theorem.

However, below we need a homeomorphism valid on the whole plane; we do
not know whether a constructive version of the above theorem has already been
shown. Fortunately, we do not need such a constructive version here.

Later we want to compare different representations using Jordan curves, where
we will use the length of a curve as important additional information. A suitable
definition of this length is (see [Wikipedia], e.g.; we will only use the case X = R

2):
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Definition 2.4 If X is a metric space with metric ‘dist’, then the length of a curve
γ : [0, 1] → X is defined by

Length(γ) = sup

{
k∑

i=1

dist(γ(ti), γ(ti−1)) : k ∈ N and 0 = t0 < t1 < · · · < tk = 1

}

A rectifiable curve is a curve with finite length.

In general, the length of a (computable) Jordan curve can be infinite. Even for
rectifiable Jordan curves, the length might be non-recursive; this has already been
shown in [5](9): The authors construct a computable curve with a non-recursive
length. It is quite easy to see that the length of the constructed curve is left-
computable but not right-computable. This leaves the question whether the length
must always be left-computable. We are able to give a positive answer. Please note
that this result holds for all curves; it is not necessary that they are Jordan curves.
So for each computable Jordan curve γ, Length(γ) is left-computable.

Theorem 2.5 The length of curves is (δ[0;1]→ , 	<)-computable, but even restricted to
Jordan curves it is not (δ[0;1]→ , 	>)-continuous.

Please note that the construction in the proof below even works if we restrict
the domain of the length operator to Jordan curves with finite length.

Proof. To show the computability, consider γ ∈ C([0; 1], R2). For any � < Length(γ),
definition 2.4 implies that there are 0 = t0 < t1 < . . . < tk = 1 and m ∈ N such that

Length(γ) ≥
k∑

i=1

dist(γ(ti), γ(ti−1)) > � + 22−m

As γ is continuous, there are dyadic values di such that dist(γ(di) − γ(ti)) ≤
2−m/k for each i. So also

∑k
i=1 dist(γ(di), γ(di−1)) > � + 21−m.

Now consider the following oracle machine M . Its oracle φ is interpreted as a
curve γ using δ

[0;1]→ . Internally, M will use a (computable) bijection π : N → D
∗×N.

• Given any input n ∈ N, M first computes π(n) = ((d0, . . . , dk), m) and checks
whether 0 = d0 < di < . . . < dk = 1. If not, M returns 0 ∈ D (as a valid lower
bound for the curve length) and stops.

• Otherwise, M uses the oracle φ to compute approximations gi to γ(di) with an
error of ≤ 2−m−1/k for each i.

• Finally M computes sn := −2−m +
∑k

i=1 dist(gi, gi−1)(∈ D) and returns sn.

By construction, we have sn ≤ Length(γ). On the other hand, the discussion above
shows that for any � < Length(γ) there is an input n such that � < sn.

So for any φ in the domain of δ
[0;1]→ this algorithm computes a sequence (sn)n∈N

with supn sn = Length(δ[0;1]→ (φ)), i.e. Length is left-computable.
Standard arguments can be used to show non-(δ[0;1]→ , 	>)-continuity of Length.�
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3 Jordan domains/areas

As Jordan curves have a non-empty, open interior, they can be used to define regions
in the Euclidean plane. In [6,12,14] a bounded open set S ⊆ R

2 is called a Jordan
domain if its boundary ∂S is a Jordan curve. The main focus of these papers was
on Jordan domains computable in polynomial time, i.e. there had to be at least
one polynomial time computable Jordan curve γ such that γ(S) = ∂S. Of course,
due to the Jordan-Schönflies theorem, the Jordan domains are topologically just
homeomorphic images of the open unit disc.

On the other hand, in computable analysis several definitions of computability
of subsets of R

n have been discussed in the near past, especially for bounded sets.
Many of these definitions always apply at the same time to sets S and their closure
S as well: [6,7,8,13], [3], [16,17]. So we should also consider the union of the domain
and its boundary, i.e. the homeomorphic images of the closed unit disc. We will
call them Jordan areas:

Definition 3.1 A bounded subset S ⊂ R
2 is called a Jordan domain, iff it is a

homeomorphic image of the open unit disc. S is called a Jordan area, iff it is
a homeomorphic image of the closed unit disc. Let Jo be the set of all Jordan
domains and let Jc be the set of Jordan areas.

The first two of the following representations are immediate from the definition of
Jordan domains in [6,12,14]. The third is essentially a restriction of a representation
of compact sets using a grid of points from [16](143ff). Some properties of this
approach (concerning computational complexity) can be found in own paper [17].
In [4] a comparison of several representation of compact sets can be found.

Definition 3.2 Representations for the set Jc of Jordan areas:

(i) The ‘Jordan curve’ representation 	→ is defined by: 	→(φ) = S for a S ∈ Jc

iff
γ := δ[0;1]

→ (φ) is one-to-one on [0; 1), γ(0) = γ(1) and γ[0; 1] = ∂S

(ii) The ‘Jordan sphere’ representation 	� is defined by: 	�(φ) = S for a S ∈ Jc

iff
γ := δS

→(φ) is one-to-one on S and γ(S) = ∂S

(iii) The ‘grid name’ representation 	# is defined by: 	#(φ) = S for a S ∈ Jc iff

φ : N → F (D2) satisfies (∀n ∈ N) (φ(n) ∈ F (D2
n) ∧ dH(S, φ(n)) ≤ 2−n)

Essentially, 	→ and 	� are defined by combination of a restriction of the standard
representations of function spaces (to [0; 1] or S) and an additional equivalence
relation on the functions (where f ≡ g iff f [0; 1] = g[0; 1] or iff f(S) = g(S) ).

So the same set is represented by many different functions: (1) we can choose
any point on the boundary to be the ‘starting point’ of the Jordan curve, (2) the
orientation of the curve might be clockwise or anticlockwise, and (3) the ‘speed’ of
the curves can differ.
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Obviously it is quite easy to translate between 	→ and 	�, but the relations
between 	� and 	# will be the main topic of this paper.

Lemma 3.3 	→ ≡ 	�

Proof. Omitted. �

In the following we first want to show that we are able to translate 	� to 	#.
Using the Jordan curve theorem, we essentially have to determine whether a point
is in the exterior of the curve γ, in its interior, or whether it lies on the curve itself
(or more precisely: is near the curve). Neither the exterior nor the neighborhood
of the curve place a problem; we only have to be sure when we look at the interior.
Here the notion of the winding number (or index) of a curve is important; the
basic idea has already be used in [2], in [5,6] Ko and Chou analyzed aspects of its
complexity. The winding number for a closed curve γ and a point z0 may be defined
via a complex integral (i.e. we identify R

2 with C):

Indγ(z0) :=
1

2πi

∮
γ

dz

z − z0

Constructive aspects of the winding number have been addressed already in [1], a
fully computerized proof of some of its properties can be found in [9].

Please note that here we essentially have a path integral in the set of complex
numbers. If z0 does not lie on the curve, then the value of the integral is well-
defined, and must be an integer. In case of Jordan curves, its value is either 0
(for points in the exterior of γ), +1 (for points in the interior of a curve γ that
is positively oriented) or −1 (for points in the interior of a negatively oriented γ).
As the value must be an integer, it is sufficient to approximate the integral with a
precision fixed to 2−1. So for any point not on the curve, we are able to determine
the value in finite time. The dependency of the computation time on the distance
to curves, that are polynomial time computable, has already been studied in [6].
Here we present a uniform formulation of the result:

Lemma 3.4 The winding number Ind is ((δS→, 	2), νN)-computable on the set

{(γ, z0) | γ ∈ C(S, R2), z0 �∈ γ(S)}

Proof. Omitted. �

In the following we will use the computability of the winding number to translate
between 	� and 	#. In [12], Ko and Yu analyzed the complexity of a further
algorithm for the membership problem for curves computable in polynomial time,
which could also be used as (still non-uniform) step towards the reduction between
	� and 	#.

Definition 3.5 Define the ‘boundary grid’ representation 	∂ of Jordan areas by:

N.Th. Müller, X. Zhao / Electronic Notes in Theoretical Computer Science 221 (2008) 191–206 197



	∂〈d0, φ〉 = S for a S ∈ Jc iff d0 denotes a dyadic point in the interior of S and
φ determines the boundary of S as follows:

φ : N → F (D2) satisfies (∀n ∈ N) (φ(n) ∈ F (D2
n) ∧ dH(∂S, φ(n)) ≤ 2−n)

Please note the difference: 	∂ uses just the boundary of S and an interior point,
while 	# uses the whole set S!

Lemma 3.6 	� ≤ 	∂ ≤ 	#

Proof. Omitted. �

It can easily be seen that at least one part of the inverse of the previous lemma
is not true: There is no continuous translation from 	# to 	∂ . Unfortunately, we
do not know whether 	∂ �≤t 	→ or not.

Lemma 3.7 	# �≤t 	∂, 	# �≤t 	→

Proof. To prove 	# �≤t 	∂ , we can use a standard argument for non-continuity:
Just consider the unit circle as a special Jordan area and the special 	#-name φ

with φ(n) = {d ∈ D
2
n | dist(d, (0, 0)) ≤ 1}. If there were a translation from 	# to

	∂ , there would be a n0 such that only φ(n) with n < n0 are used to determine a
dyadic d in the interior of the unit circle. But if we now remove an open strip from
the unit circle that has a width of 2−n0 and contains d, then the resulting Jordan
area would have a name ψ that coincides with φ for n < n0, but doesn’t contain d.
So the translation would be wrong for ψ.

	# �≤t 	→ then is a simple consequence of 	→ ≤ 	∂ and 	# �≤t 	∂ . �

In the following we want to find additional constraints that allow to translate
from the grid name representation 	# to the Jordan curve representation 	∂ . First,
we have a closer look at the length of Jordan curves (i.e. at the length of the
boundary of Jordan areas) again:

In the proof on the length of a Jordan curve in the previous chapter, it was very
easy to find an ‘ordered’ set of values on the curve: We simply took γ(ti) for an
increasing sequence (ti). Using the grid representation 	#, it is harder to ensure this
ordering. The following two lemmata will give us the necessary tools. The first one
is very technical and will ensure that we are able to find valid lower approximations
for Length(γ); many of its preconditions are depicted in figure 1(a). The second
lemma will be used to show the convergence of the approximations.

Lemma 3.8

(i) Let S be a Jordan area and let γ be a Jordan curve with ∂S = γ(S).

(ii) Let θ : [0; 1] → R
2 be a Jordan curve in the form of a square such that S lies

in the interior of θ.

(iii) Let 0 < t1 < . . . < tk < 1 be given for a k > 1.

(iv) Let k pairwise disjoint curves θi : [0; 1] → R
2 be given such that:

• θi(0) = θ(ti), i.e. θi starts in θ(ti) on the square.
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• All the other points of θi are in the interior of θ and in the exterior of S.

(v) Let ε ∈ R
+ be given.

(vi) Define pi, si, Oi and Ci as follows for each i from 1, . . . , k:
• si := θi(1) is the endpoint of θi, pi := θi(0) is its initial point.
• Oi := B(si; ε) is an open disc around si with radius ε.
• Ci := ∂Oi is the circle with center si with radius ε.

(vii) Suppose that Oi ∩ S �= ∅.
(viii) Suppose that the Ci are pairwise disjoint, lie in the interior of θ and that Ci

and θj are disjoint for i �= j.

Then the length of γ can be approximated as follows:

Length(γ) ≥ Length(s1s2 . . . sks1) − 2k · ε

Proof. First we want to find a set X of points {xi | 1 ≤ i ≤ k} on the curve γ that
are ‘connected’ to the curves θi: Let i be arbitrary between 1 and k. By conditions
(iv) and (vii) we know that Oi ∩ γ(S) �= ∅, so a part of γ(S) will be inside of Ci. As
k > 1, there is a second index j with j �= i and Oj ∩ γ(S) �= ∅. So, by (viii), another
part of γ(S) must be outside of Ci. As γ is continuous, γ(S) ∩ Ci �= ∅ follows.

As both Ci and θi are closed sets, their intersection must also be closed. So on
θi there is a first point zi of intersection with Ci:

zi := min
t
{θi(t) | 0 ≤ t ≤ 1 ∧ θi(t) ∈ Ci}

With a similar argument, we can show that there is a first point xi on Ci, clockwise
after zi, that lies on γ(S). The situation is depicted in figure 1(a).

zi

xi

Ci

θi

si

pi

θ

γ

x2

θ

z1

pν

p1 p

p2

zη

xη

γ

xν
zν

x1

z2

(a) Construction of xi from preconditions in Lemma 3.8 (b) Main argument for point order

Fig. 1. Relations between Jordan curve γ and boundary curve θ

In the following we want to show that the points {xi | 1 ≤ i ≤ k} are already
ordered on the curve γ according to the index i: Any pair of points xi and xj

with i �= j partitions the Jordan curve γ into two disjoint sub-curves Pi,j (leading
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clockwise from xi to xj) and Pj,i (leading clockwise from xj to xi, so consisting of
the rest of the curve γ). These sub-curves Pi,j also define sets of indices Ii,j := {ν |
xν lies on Pi,j , ν �= i, ν �= j} of the points from X on that sub-curve.

For simplicity, we will only consider the case i = 1 and the points x1, x2 in the
following: The curves P1,2 and P2,1 divide the set {i | 3 ≤ i ≤ k} into disjoint sets
I1,2 and I2,1.

With an indirect argument we will show that one of the two index sets is empty:
Suppose both were non-empty, so there exist a ν ∈ I1,2 as well as an η ∈ I2,1. So
P1,2 is the union of P1,ν and Pν,2, while P2,1 consists of P2,η and Pη,1. These four
curves are all disjoint with the obvious exception of the endpoints, while together
they must again yield γ. The situation is homeomorphic to the figure 1(b).

γ may neither cross θ nor any θi (by conditions (ii) and (iv)) nor any of the arcs
between zi and xi (by construction of the xi), with exception of the xi themselves. So
obviously, two of the curves P1,ν , Pν,2 P2,η, Pη,1 must cross, which is a contradiction
to γ being a Jordan curve. (A formal argument could be based e.g. on the Jordan
curve composed by Pν,2, the line segments p2z2x2 and pνzνxν together with that
part of θ connecting p2 and pν via p1 so that x1 lies in the interior and xη in its
exterior.)

So either I1,2 or I2,1 is empty. Consider the case that I1,2 = ∅. As 1 ∈ I2,3

would imply 3 ∈ I1,2, we know 1 ∈ I3,2, so I3,2 �= ∅. Using the same argument as
above, I2,3 must be empty. Inductively, the paths P1,2, P2,3, . . . , Pk−1,k, Pk,1 must
be a disjoint (with exception of the endpoints) decomposition of γ. Here γ has the
same orientation (positive or negative) as θ.

The same argument shows that in the case I2,1 = ∅ the curve γ is decomposed
into Pk,k−1, Pk−1,k−2, . . . , P2,1, P1,k. Here γ and θ have different orientation.

In both cases the length of γ can be approximated from below by the length of
the polygon given by the points x1x2 . . . xkx1. As dist(xi, si) ≤ ε, we conclude

Length(γ)≥Length(x1x2 . . . xkx1)
≥Length(s1s2 . . . sks1) − 2k · ε

So from the ‘approximating’ polygon s1s2 . . . sks1 we are able to derive a valid lower
bound for Length(γ). �

Lemma 3.9 The boundary length is (	#, 	<)-computable. So if a Jordan area S

has a computable 	#-name, then Length(∂S) is left-computable.

Proof. Suppose φ is a 	#-name for a Jordan area S, let γ be a Jordan curve with
γ([0; 1]) = ∂S.

To find a lower bound for Length(∂S), consider tuples (ε, k, θ, (θi)) of the fol-
lowing objects: any ε ∈ D, k ∈ N, any square θ with center 0 and side length r ∈ D,
any piecewise linear curves θi with dyadic vertices. Let pi and si be the dyadic end
points of θi, as well as Oi := B(si; ε). An additional t ∈ N will act as a time bound.
Then for at most t steps and using φ as an oracle for S, try to check whether this
combination of values fulfills all properties from Lemma 3.8. If the time is sufficient
and if the check gives a positive result, then return � := Length(s1s2 . . . sks1)−2kε.
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Otherwise return � := 0 (as a lower bound for ∂S).
As the set of tuples (ε, k, θ, (θi), t) is countable, we can use a pairing function to

encode each tuple into a natural number n; so this ‘algorithm’ defines a functional
f : (φ, n) �→ �. By Lemma 3.8, f(φ, n) ≤ Length(∂S) must hold.

We still have to show that the sup f(φ, n) = ∂S: So consider an arbitrary
L < Length(∂S). By definition 2.4, there must be a ε > 0 and values 0 < t1 <

. . . < tk < 1 such that L < Length(y1y2 . . . yky1)− ε, where yi := γ(ti). We want to
show now that there is an n such that L ≤ f(φ, n).

Now instead of γ with γ([0; 1]) = ∂S consider γ with γ ◦σS = γ. This transforms
the ti into points {ri | 1 ≤ i ≤ k} ordered clockwise on S such that γ(ri) := yi. Due
to the Jordan-Schönflies theorem, there is a homeomorphism Γ on R

2 that extends
γ, i.e. Γ(ri) = γ(ri) = yi. Define infinite curves ηi : {t | t ≥ 1} → R

2 by ηi := ri · t.
These curves start at the ri on the unit circle. Additionally, they are unbounded
and pairwise disjoint. As Γ is homeomorphic, this must also hold for their images
Γ(ηi). In consequence, any square θ containing S has a non-empty intersection with
each of the Γ(ηi).

η1

η2
η3

η4

r1
r4

r3r2

Γ(η1)

Γ(η4)

y1

y4

Γ(η3)

y3
y2Γ

Γ(η2)

θ1

θ2
θ4

y1

y4

y3

θ3

y2

θ

Fig. 2. Homeomorphism Γ and resulting θi

Just fix one ‘large’ square having a dyadic side length. Then let θi be the
restriction of Γ(ηi) from the starting point yi to the first point intersection point
pi with θ. Using a re-parameterization, we may as well assume θi : [0; 1] → R

2,
see figure 2. These curves θi must be pairwise disjoint, so there is a dyadic ε′ > 0
smaller than the distance between any of these curves. We may assume ε′ < ε

4k .
The closed sets θi[0; 1] \ B(yi, ε

′) and γ(S) are also pairwise disjoint, so there is a
dyadic δ with 0 < δ < ε′ that is smaller than the distance between them.

Consider the open sets Si :=
⋃

z∈θ[0;1] B(z, δ): It is easy to see that each of these
sets contains dyadic polygons θ′i touching θ on the one end in a point p′i, while the
other end point s′i is closer to yi than ε′, and additionally that the distance between
γ(S) and θ′i[0; 1] is at least δ.

The tuples (ε′, k, θ, (θ′i)) have all the properties necessary for Lemma 3.8. Be-
cause of the lower bound δ we are able to check these properties in a finite amount
t of time, just using φ; so there is an n with f(φ, n) = Length(s′1s′2 . . . s′ks

′
1)−2k · ε′.

On the other hand, each s′i is closer to yi than ε, so Length(s′1s′2 . . . s′ks
′
1) ≥

Length(y1y2 . . . yky1) − 2kε′. Using ε′ < ε
4k , this implies L < f(φ, n). �

To be more precise, we reformulate this result using representations.
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Definition 3.10

• Let Jc
f be the set of all Jordan areas with a boundary of finite length.

• Let 	#
f be a representation of Jc

f such that 	#
f 〈φ, ψ〉 = S iff 	#(φ) = S and

	(ψ) = Length(∂S).
• Let 	→f be a representation of Jc

f such that 	→f 〈φ, ψ〉 = S iff 	→(φ) = S and
	(ψ) = Length(∂S).

• Let 	→r be a representation of Jc
f defined by restriction of 	→, i.e. 	→r (φ) := 	→(φ)

iff 	→(φ) ∈ Jc
f .

Please note: As we already know that the boundary length must be computable
from the left, it would be sufficient if we additionally are able to compute it from
the right.

Now we are able to formulate the main result of this paper:

Theorem 3.11 The following reductions are valid:

• 	#
f ≤ 	→r

• 	#
f ≡ 	→f

• 	→r �≤t 	→f
So given the (finite!) length of the boundary of a Jordan area and a grid name of
the area, we are able to find a Jordan curve describing this boundary.

Proof. We only have to show 	#
f ≤ 	→r here. Then 	#

f ≡ 	→f is a trivial consequence
of Lemma 3.6, while 	→r �≤t 	→f follows from 2.5.

Let 〈φ, ψ〉 be a 	#
f -name for a Jordan domain and let S := 	#(φ) be the Jordan

area given by φ, i.e. � := 	>(ψ) is the length of any of the (uncountably many)
Jordan curves γ with γ[0; 1] = ∂S.

One part of the problem is to determine one ‘initial’ point α on the boundary
∂S; however, the location of this point will depend computably(!) on the name φ.
Consider the special curve γα with:

• clockwise orientation,
• γα(0) = γα(1) = α and
• Length(γα( i

n)) = � · i
n .

Having fixed α, γα is uniquely determined by the properties above. In the following
we will construct both α and the curve γα in parallel.

〈φ, ψ〉 will be used as the oracle for an oracle Turing machine. On input n ∈ N,
this machine should return converging approximations to γα.

In the following we will just show instead that we are able to evaluate γα(t) to
any precision for any argument t, which is equivalent to the approximation of γα.

Later in the proof we will need increasing sequences of natural numbers m to-
gether with positive dyadic values εm and a second sequence of closed dyadic polyg-
onal paths sm

1 sm
2 ...sm

msm
1 such that for any of these m there is a corresponding
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path xm
1 xm

2 ...xm
mxm

1 of points from ∂S (in clockwise orientation) with xm
i ∈ Om

i :=
B(sm

i ; εi). For any of the xm
i let tmi be such that γα(tmi ) = xm

i . We may easily
ensure that always εm ≤ 2−m.

The construction of the sequences will be done iteratively (and independent
from t, so the resulting point α will only depend on φ): We start with m = 1 and
ε1 := 1/2. Then we use φ to find an arbitrary dyadic point s1

1 from ext(S) such
that B(s1

1; 1/2) ∩ S �= ∅, so there is a x1
1 ∈ O1

1.
If εm′ and sm′

1 are already determined, we can use φ and the exhaustive con-
struction from the proof of 3.9 to find new values m > m′, εm and sm

1 sm
2 ...sm

msm
1 . We

only restrict this search as follows: We demand εm ≤ 2−m, a nondecreasing length
of the path sm

1 sm
2 ...sm

msm
1 , and additionally sm

1 ∈ Om
1 ⊂ Om′

1 . This will ensure that
the sequence Om

1 converges to a single point α with α ∈ B(sm
1 ; εm) for any m. As

xm′
1 ∈ Om′

1 , choosing y1y2 . . . ymy1 as a refinement of xm′
1 xm′

2 xm′
m′xm′

1 with y1 = xm′
1

in the proof of the convergence in 3.9 shows that even with this restriction we still
get paths sm

1 sm
2 ...sm

msm
1 having length arbitrarily close to �.

As the xm
i are close to the sm

i , for any i < j we have

Length(γα([tmi ; tmj ]) ≥ Length(xm
i xm

i+1 . . . xm
j−1x

m
j )

≥ Length(sm
i sm

i+1 . . . sm
j−1s

m
j ) − 2mεm

(1)

for the sub-curve γα([tmi ; tmj ]) between xm
i and xm

j .
Now let ε(m) := 2(m+1)εm. So using �m

< := Length(sm
1 sm

2 . . . sm
msm

1 ) − ε(m) we
get �m

< < Length(xm
1 xm

1 . . . xm
mxm

1 ) ≤ �.
To get approximations �m

> converging to � from the right is much easier: We
only have to use ψ.

Now consider an arbitrary t ∈ [0; 1] for which we want to approximate γα(t).
(For simplicity we will use t as a fixed, exact value, but the following could be
formulated using approximating intervals as well, on the cost of the ease of reading.)
The precision of the approximation shall be 2−n.

We start the approximation by searching a value m such that ε(m) < 2−n−4 and
additionally �m

> − �m
< < 2−n−4. This search will stop after finite time, as both �m

>

and �m
< converge to �. We may assume that at the end also all lengths sm

i sm
i+1 are

smaller than 2−n−3, as we can reduce the size of the sets Oi in the construction in
3.9 and then insert new points into the sequence if needed.

By definition of γα we have Length(γα[0; t]) = � · t. Let j be maximal such
that Length(sm

j sm
j+1 . . . sm

msm
1 ) ≥ (1 − t) · �m

> + ε(m) and i be minimal such that
Length(sm

1 sm
2 . . . sm

i ) ≥ t · �m
> + ε(m). As the whole curve has a length close to �m

> ,
we will assume 1 < j < i < m for simplicity in the following.

Then using equation (1) and α ∈ B(sm
1 ; εm), we have (for i) Length(γα([0; tmi ])) ≥

t · �m
> > t · �, and (for j) Length(γα([tmj ; 1]) ≥ (1 − t) · �m

> > (1 − t) · �, so together
we see that tmj < t < tmi , i.e. γα(t) is located somewhere on the sub-curve between
xm

j and xm
i .

Using the special choice of i and j and the density of the points si, we additionally
get Length(sm

1 sm
2 . . . sm

i ) ≤ t·�m
>+ε(m)+2−n−3, implying Length(sm

i sm
i+1 . . . sm

msm
1 ) ≥
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�m
< − t · �m

> − ε(m) − 2−n−3. So Length(γα([tmi ; 1])) ≥ �m
< − t · �m

> − ε(m) − 2−n−3.
In a similar manner we get Length(γα([0; tmj ])) ≥ �m

< − (1 − t) · �m
> − ε(m) − 2−n−3,

hence Length(γα([tmj ; tmi ])) ≤ � + �m
> − 2�m

< + 2ε(m) + 2−n−2. This results in

Length(γα([tmj ; tmi ])) ≤ 2−n−1

This implies that also the distance between sm
j and γα(t) is at most 2−n.

So for any t we are able to approximate γα(t) with any desired precision. This
is sufficient to show that we are able to compute γα from 〈φ, ψ〉. �

If in the proof we just use the constructed Jordan curve γ0 (given via δ
[0;1]→ ) in-

stead of using the Jordan area (via the representation 	→r ), we see that we essentially
constructed a mapping from Jordan areas to their boundaries:

Corollary 3.12 There is a (	#
f , δ

[0;1]→ )-computable multi-valued function Bf : Jc
f →

C([0; 1], R2) such that Bf(S) is a Jordan curve γ defining the boundary of S.

As there are many Jordan curves defining the same Jordan area, this func-
tion seems to be inherently multi-valued. There are three sources for this multi-
valuedness, only two of which we could avoid in the proof of 3.11:

• Orientation of the curves: In main part of the proof, we restricted the orientation
to always be clockwise.

• ‘Speed’ of the curves: Because of the finite length, we were able to ‘normal-
ize’ the speed, i.e. for a total length � any initial segment of the curve fulfills
Length(γ[0;x]) = x · �.

• Starting point of the curves: Here we were unable to find a computable single-
valued mapping S �→ α from Jc

f to R
2 such that α is on the boundary of S.

Although we don’t believe that such a mapping exists, we cannot present a proof
here.

4 Closing Remarks and Questions

Many open questions and problems arose during the preparation of the paper:

• There should be a multivalued(?) continuous mapping γ → Γ, i.e. there should
be a constructive version of the Jordan-Schönflies theorem.

• Can we say anything about the complexity of Γ? How large is its complexity for
standard examples?

• Does the length of a rectifiable curve also help to compute its measure? Compare
this to [11], where a rectifiable curve with nonrecursive measure was constructed.
That curve had a non-computable length.

While the representation 	→ is hard to generalize, it is straightforward to define
a higher-dimensional analogue to 	� and 	#:
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Definition 4.1

• For any dimension d ∈ N, d ≥ 2, the d-dimensional unit sphere Sd ⊆ R
d can be

defined as Sd := {x ∈ R
d : |x| = 1}.

• The d-dimensional Jordan areas Jc
d can be defined via the image of Sd under a

continuous injective function.
• A representation 	�

d can be defined by 	�
d (p) = S for a S ∈ Jc

d iff

f := δSd→ (p) is one-to-one on Sd and f(Sd) = ∂S

• A representation 	#
d can defined by 	#

d (p) := S for a S ∈ Jc
d iff

φ : N → F (Dd) satisfies (∀n ∈ N) (φ(n) ∈ F (Dd
n) ∧ dH(S, φ(n)) ≤ 2−n)

For complexity, instead of using d-dimensional unit sphere the d-dimensional
unit cube could be of interest: Here we have a grid of dyadic points on each face of
the cube, which should enable us to simplify several constructions.

The idea of using the length of the boundary in order to compute the boundary
itself is presumably not useful in higher dimensions: Here we would like to use the
area of the surface, but there could be very thin ‘needles’ (i.e. with a very small
surface) that destroy the locality of the boundary.

Unfortunately, the Jordan-Schönflies theorem cannot be generalized to higher
dimensions, with Alexanders horned sphere being a counterexample.
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