71 research outputs found

    A Combined Representation Learning Approach for Better Job and Skill Recommendation

    Get PDF
    Job recommendation is an important task for the modern recruitment industry. An excellent job recommender system not only enables to recommend a higher paying job which is maximally aligned with the skill-set of the current job, but also suggests to acquire few additional skills which are required to assume the new position. In this work, we created three types of information net- works from the historical job data: (i) job transition network, (ii) job-skill network, and (iii) skill co-occurrence network. We provide a representation learning model which can utilize the information from all three networks to jointly learn the representation of the jobs and skills in the shared k-dimensional latent space. In our experiments, we show that by jointly learning the representation for the jobs and skills, our model provides better recommendation for both jobs and skills. Additionally, we also show some case studies which validate our claims

    Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts

    Get PDF
    CD68 is a member of the lysosome associated membrane protein (LAMP) family that is restricted in its expression to cells of the monocyte/macrophage lineage. This lineage restriction includes osteoclasts, and, while previous studies of CD68 in macrophages and dendritic cells have proposed roles in lipid metabolism, phagocytosis, and antigen presentation, the expression and function of CD68 in osteoclasts have not been explored. In this study, we investigated the expression and localization of CD68 in macrophages and osteoclasts in response to the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). We found that M-CSF stimulates CD68 expression and RANKL alters the apparent molecular weight of CD68 as measured by Western immunoblotting. In addition, we explored the significance of CD68 expression in osteoclasts by generating mice that lack expression of CD68. These mice have increased trabecular bone, and in vitro assessment of CD68−/− osteoclasts revealed that, in the absence of CD68, osteoclasts demonstrate an accumulation of intracellular vesicle-like structures, and do not efficiently resorb bone. These findings demonstrate a role for CD68 in the function of osteoclasts, and future studies will determine the mechanistic nature of the defects seen in CD68−/− osteoclasts

    Monitoring of deforestation events in the tropics using multidimensional features of Sentinel 1 radar data

    Get PDF
    Many countries and regions are currently developing new forest strategies to better address the challenges facing forest ecosystems. Timely and accurate monitoring of deforestation events is necessary to guide tropical forest management activities. Synthetic aperture radar (SAR) is less susceptible to weather conditions and plays an important role in high-frequency monitoring in cloudy regions. Currently, most SAR image-based deforestation identification uses manually supervised methods, which rely on high quality and sufficient samples. In this study, we aim to explore radar features that are sensitive to deforestation, focusing on developing a method (named 3DC) to automatically extract deforestation events using radar multidimensional features. First, we analyzed the effectiveness of radar backscatter intensity (BI), vegetation index (VI), and polarization feature (PF) in distinguishing deforestation areas from the background environment. Second, we selected the best-performing radar features to construct a multidimensional feature space model and used an unsupervised K-mean clustering method to identify deforestation areas. Finally, qualitative and quantitative methods were used to validate the performance of the proposed method. The results in Paraguay, Brazil, and Mexico showed that (1) the overall accuracy (OA) and F1 score (F1) of 3DC were 88.1–98.3% and 90.2–98.5%, respectively. (2) 3DC achieved similar accuracy to supervised methods without the need for samples. (3) 3DC matched well with Global Forest Change (GFC) maps and provided more detailed spatial information. Furthermore, we applied the 3DC to deforestation mapping in Paraguay and found that deforestation events occurred mainly in the second half of the year. To conclude, 3DC is a simple and efficient method for monitoring tropical deforestation events, which is expected to serve the restoration of forests after deforestation. This study is also valuable for the development and implementation of forest management policies in the tropics

    Fungi and cercozoa regulate methane-associated prokaryotes in wetland methane emissions

    Get PDF
    Wetlands are natural sources of methane (CH4) emissions, providing the largest contribution to the atmospheric CH4 pool. Changes in the ecohydrological environment of coastal salt marshes, especially the surface inundation level, cause instability in the CH4 emission levels of coastal ecosystems. Although soil methane-associated microorganisms play key roles in both CH4 generation and metabolism, how other microorganisms regulate methane emission and their responses to inundation has not been investigated. Here, we studied the responses of prokaryotic, fungal and cercozoan communities following 5 years of inundation treatments in a wetland experimental site, and molecular ecological networks analysis (MENs) was constructed to characterize the interdomain relationship. The result showed that the degree of inundation significantly altered the CH4 emissions, and the abundance of the pmoA gene for methanotrophs shifted more significantly than the mcrA gene for methanogens, and they both showed significant positive correlations to methane flux. Additionally, we found inundation significantly altered the diversity of the prokaryotic and fungal communities, as well as the composition of key species in interactions within prokaryotic, fungal, and cercozoan communities. Mantel tests indicated that the structure of the three communities showed significant correlations to methane emissions (p < 0.05), suggesting that all three microbial communities directly or indirectly contributed to the methane emissions of this ecosystem. Correspondingly, the interdomain networks among microbial communities revealed that methane-associated prokaryotic and cercozoan OTUs were all keystone taxa. Methane-associated OTUs were more likely to interact in pairs and correlated negatively with the fungal and cercozoan communities. In addition, the modules significantly positively correlated with methane flux were affected by environmental stress (i.e., pH) and soil nutrients (i.e., total nitrogen, total phosphorus and organic matter), suggesting that these factors tend to positively regulate methane flux by regulating microbial relationships under inundation. Our findings demonstrated that the inundation altered microbial communities in coastal wetlands, and the fungal and cercozoan communities played vital roles in regulating methane emission through microbial interactions with the methane-associated community

    Packaging of high power semiconductor lasers

    No full text
    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed

    Association of LIPC -250G/A and -514C/T polymorphisms and hypertension: a systematic review and meta-analysis

    No full text
    Abstract Background Hypertension is the most common chronic disease, and most important risk factor for cardiovascular disease. This meta-analysis aimed to explore the association between hepatic lipase gene (LIPC) gene -250G/A (rs2070895) and -514C/T (rs1800588) polymorphisms and the susceptibility to hypertension. Methods Published studies were searched using the PubMed, Embase and Cochrane Library databases. Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included studies. Sensitivity analysis was performed using “leave one out” method. Egger’s test was used to evaluate the publication bias. The random effect model was used to calculate the pooled effect size if P < 0.05 or I2 ≥ 50%; otherwise, the fixed effect model was selected. Results Four eligible studies, including 2599 participants, were enrolled in the included studies from 2007 to 2014. Quality evaluation revealed that each study had high NOS scores ranged from 5 to 7. The LIPC rs1800588 polymorphism was not found to be associated with the susceptibility to hypertension under all genetic models (T vs C, P = 0.38; CT vs CC, P = 0.46; TT vs CC, P = 0.38; TT vs CC + CT, P = 0.54; TT + CT vs CC, P = 0.34). Notably, the frequencies of the AA+GA genotypes of LIPC rs2070895 polymorphism were related to an increased risk of hypertension (AA+GA vs. GG, OR = 1.1954, 95% CI: 1.0001–1.4288, P = 0.05). Conclusion The LIPC rs2070895 polymorphism was found to be related to an increased risk of hypertension. However, LIPC rs1800588 polymorphism was not associated with the susceptibility to hypertension

    Calibration and Optimization of the Ångström–Prescott Coefficients for Calculating ET0 within a Year in China: The Best Corrected Data Time Scale and Optimization Parameters

    No full text
    This study used meteorological data from official data sets to correct &Aring;ngstr&ouml;m&ndash;Prescott formula parameters for China&rsquo;s agricultural zones for which existing research encountered the problem of spatio-temporal scale disunity. The data, collected from 124 stations, were used to correct the as and bs coefficients of the &Aring;ngstr&ouml;m&ndash;Prescott formula, by area, at 5&ndash;50 year-scales, the former taking into account China&rsquo;s comprehensive agricultural zones. We focused on how the as and bs obtained from the different time scales corrected data affected the calculating solar radiation (Rs_c) precision, determined the optimal time scale for the corrected data, and compared and selected the as and bs with the minimum estimation error as the recommended values. The results show that our corrected as and bs coefficient values significantly reduce the range of the relative error of Rs_c, with 10 years being the best time scale for the corrected data. Further, the Rs_c precisions estimated by as and bs coefficients based on the Food and Agriculture Organization of the United Nations (FAO) and the regression result of the best time scale corrected data are inconsistent in different months by area. The best choice in practice is combining the two coefficients and optimizing their use. This study provides a research-based process for standardizing the correction of &Aring;ngstr&ouml;m&ndash;Prescott formula parameters and selecting the corrected data time scale in China. It would be helpful in improving the calculation accuracy for reference crop evapotranspiration (ET0)

    SMOC2 plays a role in heart failure via regulating TGF-β1/Smad3 pathway-mediated autophagy

    No full text
    Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-β1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-β agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-β1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-β1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-β1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF

    Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats

    No full text
    Background/Aims: Cardiac sympathetic afferent reflex (CSAR) enhancement contributes to exaggerated sympathetic activation in chronic heart failure (CHF). The current study aimed to investigate the roles of angiotensin (Ang)-(1-7) in CSAR modulation and sympathetic activation and Ang-(1-7) signaling pathway in paraventricular nucleus of CHF rats. Methods: CHF was induced by coronary artery ligation. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate CSAR in rats with anesthesia. Results: Ang-(1-7) increased RSNA, MAP, CSAR activity, cAMP level, NAD(P)H oxidase activity and superoxide anion level more significantly in CHF than in sham-operated rats, while Mas receptor antagonist A-779 had the opposite effects. Moreover, Ang-(1-7) augmented effects of Ang II in CHF rats. The effects of Ang-(1-7) were blocked by A-779, adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor Rp-cAMP, superoxide anion scavenger tempol and NAD(P)H oxidase inhibitor apocynin. Mas and AT1 receptor protein expressions, Ang-(1-7) and Ang II levels in CHF increased. Conclusions: These results indicate that Ang-(1-7) in paraventricular nucleus enhances CSAR and sympathetic output not only by exerting its own effects but also by augmenting the effects of Ang II through Mas receptor in CHF. Endogenous Ang-(1-7)/Mas receptor activity contributes to CSAR enhancement and sympathetic activation in CHF, and NAD(P)H oxidase-derived superoxide anions and the cAMP-PKA signaling pathway are involved in mediating the effects of Ang-(1-7) in CHF
    corecore