48 research outputs found

    Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1

    Get PDF
    Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension

    MicroRNA410 Inhibits Pulmonary Vascular Remodeling via Regulation of Nicotinamide Phosphoribosyltransferase

    Get PDF
    Nicotinamide phosphoribosyltransferase (NAMPT) upregulation in human pulmonary artery endothelial cells (hPAECs) is associated with pulmonary arterial hypertension (PAH) progression and pulmonary vascular remodeling. The underlying mechanisms regulating NAMPT expression are still not clear. In this study, we aimed to study the regulation of NAMPT expression by microRNA410 (miR410) in hPAECs and explore the role of miR410 in the pathogenesis of experimental pulmonary hypertension. We show that miR410 targets the 3' UTR of NAMPT and that, concomitant with NAMPT upregulation, miR410 is downregulated in lungs of mice exposed to hypoxia-induced pulmonary hypertension (HPH). Our results also demonstrate that miR410 directly inhibits NAMPT expression. Overexpression of miR410 in hPAECs inhibits basal and VEGF-induced proliferation, migration and promotes apoptosis of hPAECs, while miR410 inhibition via antagomirs has the opposite effect. Finally, administration of miR410 mimics in vivo attenuated induction of NAMPT in PAECs and prevented the development of HPH in mice. Our results highlight the role of miR410 in the regulation of NAMPT expression in hPAECs and show that miR410 plays a potential role in PAH pathobiology by targeting a modulator of pulmonary vascular remodeling

    A novel aspirin prodrug inhibits NFκB activity and breast cancer stem cell properties

    Get PDF
    INTRODUCTION: Activation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored. METHODS: A library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44(+)CD24(−)immunophenotype and tumorigenicity at limiting dilution. RESULTS: While we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44(+)CD24(−)immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate that fumarate, within the context of an ASA prodrug, is essential for anti-NFκB activity, whereas both the ASA and fumarate moieties contributed to attenuated mammosphere growth. CONCLUSIONS: These results establish GTCpFE as a prototype for novel ASA-and fumarate-based anti-inflammatory drugs that: (i) are capable of targeting CSCs, and (ii) may be developed as chemopreventive or therapeutic agents in breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1868-7) contains supplementary material, which is available to authorized users

    An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    Get PDF
    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers

    Evidence That Endogenous Relaxin Promotes Vaginal Growth and Softening in Pregnant Rats

    No full text
    151 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2000.Rat relaxin is produced and secreted by the ovary throughout the second half of pregnancy. Relaxin promotes growth and softening of the cervix to enable rapid and safe delivery. When this studies were initiated there was no evidence that endogenous relaxin has effects on the vagina, which is linked anatomically to the cervix. There were four objectives. The first was to determine if relaxin promotes vaginal growth. When a monoclonal antibody (MCA1) was injected intravenously to rats daily from days 12--22 of pregnancy, the vaginal wet weight, dry weight, and DNA content were significantly lower than they were in controls. The second objective indicated that relaxin promoted vaginal softening. A fundamental step toward to understanding the mechanism whereby relaxin brings about these effects is to determine the histological changes. Accordingly, the third objective determined vaginal histological changes associated with vaginal growth and softening. Within the stroma relaxin reduced the density of collagen fiber bundles, reduced the length of elastin fibers, and enlarged blood vessels. These changes in the stroma appear to account for the hormone's softening effect on the vagina. Within the epithelium relaxin promoted a two-fold increase in number of cells. The increase in epithelial cells serves to line the enlarged vaginal lumen. The fourth objective provided evidence that relaxin inhibited apoptosis in the vagina. The rates of putative apoptotic cells in the vagina were moderate and steady through day 10, markedly reduced several fold throughout the second half of pregnancy, and then rose to maximal levels after delivery. When rats were made relaxin deficient with MCA1, the rates of apoptotic cells in the epithelium of vaginas were greater throughout the first 24 hours following the initiation of treatment than those from control rats. This study provides evidence that the inhibition of apoptosis is a mechanism whereby relaxin promotes growth of the vagina during the second half of pregnancy.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Perforated Thermal Mass Shading: An Approach to Winter Solar Shading and Energy, Shading and Daylighting Performance

    No full text
    Direct solar irradiance may cause thermal discomfort, even in winter when the ambient temperature is low and especially for high-altitude locations with a high intensity of solar radiation. Thus winter solar shading might be required and, if used, must achieve a balance between the prevention of the transmittance of solar irradiance, the utilization of passive solar heat and the supply of adequate natural daylighting. These considerations render conventional solutions of solar shading inapplicable in the winter. In this paper, a novel approach to perforated thermal mass shading for winter is reported and examined. The impacts of the perforated percentage and the opening positions of this shading device on energy, shading and daylighting performance were assessed for south- and west-facing orientations. A range of perforated percentages and vertical and horizontal positions were tested using simulations by Energyplus and Daysim. Our results indicate that the proposed perforated thermal mass shading is efficient for the integrated performance of shading, daylighting and energy savings in the south-facing orientation, while it achieves acceptable performance in shading and daylighting in the west-facing orientation for a high-altitude cold climate
    corecore