41 research outputs found

    Morphological and Comparative Transcriptome Analysis of Three Species of Five-Needle Pines: Insights Into Phenotypic Evolution and Phylogeny

    Get PDF
    Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species

    The band gap and nonlinear optical susceptibility of SrSn1-xVxO3 films

    Get PDF
    Perovskite-type oxide SrSn1-xVxO3 thin films with different concentrations x = 0.1–0.9 were fabricated by using pulsed-laser deposition, and the effects of V doping on the structure, optical band gap and the third-order optical nonlinearity were systematically investigated. With the increase of x value, the lattice parameters of SrSn1-xVxO3 decrease from 3.997 to 3.862 Å gradually, while the optical band gaps firstly increase and then decrease with boundary at x = 0.3. The third-order nonlinear optical responses were studied via the z-scan technique. The closed-aperture measurements show a negative nonlinear refractive index n2, and the open-aperture measurements demonstrate a saturable absorption β. Both the n2 and β responses vary with the increase of V doping level. The metal-oxygen chemical bond along with the localized V5+Sn2+V5+ complex contribute to the enhancement of optical nonlinearity, and the highest value of third-order susceptibility χ(3) is observed in SrSn0.5V0.5O3 film

    Developing a new treatment for superficial fungal infection using antifungal Collagen-HSAF dressing

    Get PDF
    Fungal pathogens are common causes of superficial clinical infection. Their increasing drug resistance gradually makes existing antifungal drugs ineffective. Heat stable antifungal factor (HSAF) is a novel antifungal natural product with a unique structure. However, the application of HSAF has been hampered by very low yield in the current microbial producers and from extremely poor solubility in water and common solvents. In this study, we developed an effective mode of treatment applying HSAF to superficial fungal infections. The marine-derived Lysobacter enzymogenes YC36 contains the HSAF biosynthetic gene cluster, which we activated by the interspecific signaling molecule indole. An efficient extraction strategy was used to significantly improve the purity to 95.3%. Scanning electron microscopy images revealed that the Type I collagen-based HSAF (Col-HSAF) has a transparent appearance and good physical properties, and the in vitro sustained-release effect of HSAF was maintained for more than 2 weeks. The effective therapeutic concentration of Col-HSAF against superficial fungal infection was explored, and Col-HSAF showed good biocompatibility, lower clinical scores, mild histological changes, and antifungal capabilities in animals with Aspergillus fumigatus keratitis and cutaneous candidiasis. In conclusion, Col-HSAF is an antifungal reagent with significant clinical value in the treatment of superficial fungal infections

    Identification and Analysis of the CBF Gene Family in Three Species of Acer under Cold Stress

    No full text
    The C-Repeat Binding Factor (CBF) gene family has been identified and characterized in multiple plant species, and it plays a crucial role in responding to low temperatures. Presently, only a few studies on tree species demonstrate the mechanisms and potential functions of CBFs associated with cold resistance, while our study is a novel report on the multi-aspect differences of CBFs among three tree species, compared to previous studies. In this study, genome-wide identification and analysis of the CBF gene family in Acer truncatum, Acer pseudosieboldianum, and Acer yangbiense were performed. The results revealed that 16 CBF genes (five ApseCBFs, four AcyanCBFs, and seven AtruCBFs) were unevenly distributed across the chromosomes, and most CBF genes were mapped on chromosome 2 (Chr2) and chromosome 11 (Chr11). The analysis of phylogenetic relationships, gene structure, and conserved motif showed that 16 CBF genes could be clustered into three subgroups; they all contained Motif 1 and Motif 5, and most of them only spanned one exon. The cis-acting elements analysis showed that some CBF genes might be involved in hormone and abiotic stress responsiveness. In addition, CBF genes exhibited tissue expression specificity. High expressions of ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4, ApseCBF5 were detected on exposure to low temperature for 3 h and 24 h. Low expressions of AtruCBF2, AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3 and AtruCBF5 were always down-regulated under cold conditions. Taken together, comprehensive analysis will enhance our understanding of the potential functions of the CBF genes on cold resistance, thereby providing a reference for the introduction of Acer species in our country

    Analysis of Existing Problems and Improvement Schemes for Substituting Electricity for Scattered Coal in China

    No full text
    In recent years, a coal-induced haze erupted over a large area in China. Implementing a strategy of substituting electricity for scattered coal (hereafter referred to as SEFSC) for the control of scattered coal is thus urgently needed. In particular, there lies great practical significance in analyzing the existing problems and improving the path of SEFSC in order to ensure rapid and effective advancement in this area. In light of this, the current paper first analyzes the distribution of China’s scattered coal and the relevant policy implementation, and discusses the potential for China to implement SEFSC. Secondly, PEST (policy, economy, society and technology) analysis is used to analyze the existing problems in China’s SEFSC strategy. From this, it becomes clear that the effect of scattered coal handling is still poor due to poor policy implementation, a weak economy, a low level of social acceptance and technical bottlenecks. Finally, based on the present situation and existing problems, this paper puts forward recommendations for improving China’s SEFSC strategy

    Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price and Window-Based XGBoost Model

    No full text
    With the continuous development of new power systems, the load demand on the user side is becoming more and more diverse and random, which also brings difficulties in the accurate prediction of power load. Although the introduction of deep learning algorithms has improved the prediction accuracy to a certain extent, it also faces problems such as large data requirements and low computing efficiency. An ultra-short-term load forecasting method based on the windowed XGBoost model is proposed, which not only reduces the complexity of the model, but also helps the model to capture the autocorrelation effect of the forecast object. At the same time, the real-time electricity price is introduced into the model to improve its forecast accuracy. By simulating the load data of Singapore’s electricity market, it is proved that the proposed model has fewer errors than other deep learning algorithms, and the introduction of the real-time electricity price helps to improve the prediction accuracy of the model. Furthermore, the broad applicability of the proposed method is verified by a sensitivity analysis on data with different sample sizes

    Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price and Window-Based XGBoost Model

    No full text
    With the continuous development of new power systems, the load demand on the user side is becoming more and more diverse and random, which also brings difficulties in the accurate prediction of power load. Although the introduction of deep learning algorithms has improved the prediction accuracy to a certain extent, it also faces problems such as large data requirements and low computing efficiency. An ultra-short-term load forecasting method based on the windowed XGBoost model is proposed, which not only reduces the complexity of the model, but also helps the model to capture the autocorrelation effect of the forecast object. At the same time, the real-time electricity price is introduced into the model to improve its forecast accuracy. By simulating the load data of Singapore’s electricity market, it is proved that the proposed model has fewer errors than other deep learning algorithms, and the introduction of the real-time electricity price helps to improve the prediction accuracy of the model. Furthermore, the broad applicability of the proposed method is verified by a sensitivity analysis on data with different sample sizes

    Exploring the Path of China's Energy Transformation under the "Carbon Peaking & Carbon Neutrality" Goals

    No full text
    The key to achieving peak carbon emissions and carbon neutrality lies in the low-carbon transformation of energy and power, which is crucial to China's overall economic and social development. With the intensification of global climate change, countries are actively exploring strategies to adapt to climate change. However, coal, as the main future energy source, is expected to remain dominant, making it urgent to advance the transformation of fossil energy towards low-carbonization. In this context, this paper comprehensively analyzes the timing of the reduction of fossil energy and the replacement of non-fossil energy in China through a comparative analysis of the international and domestic energy transformation status, taking into account the need to ensure energy supply security and achieve China's economic and social development goals. The paper proposes development suggestions for China's energy development path, including optimizing and upgrading the industrial structure, building a clean and low-carbon energy system, strengthening CCUS technology development, and leveraging market mechanisms. These recommendations provide a certain reference and guidance for China to achieve its energy transformation goals

    Safety Assessment of Heavy Metal in Tea Garden Soil: A Case Study of Specialized Tea Towns in Guangdong

    No full text
    More than 20 soil samples were collected from tea gardens of specialized tea towns in Guangdong, including Fenglang Town and Fengshun Town in Meizhou City, Changshan Town in Lianjiang City, Fenghuang Town in Chaozhou City. Content of 6 types of heavy metal (Cr, Cu, Pb, As, Cd, Hg) in tea garden soil was measured. On the basis of these, the safety was assessed. Results show that the comprehensive pollution index of these 6 types of heavy metal is lower than 0.7. According to Soil Pollution Grading Standard formulated by China Green Food Development Center, the soil is not polluted by heavy metal and remains at safety level. It proves that overall soil condition of specialized tea gardens in Guangdong Province is not polluted by heavy metal
    corecore