107 research outputs found

    Medium Access Control in Distributed Networks with Large Propagation Delay

    Full text link
    Most of the Earth is covered by water, so underwater acoustic networks (UWANs) are becoming increasingly popular in a variety of undersea applications. The needs to understand the underwater environment and exploit rich undersea resources have motivated a further development of UWANs. Underwater acoustic signals suffer from more difficult physical channel phenomena than terrestrial radio signals due to the harsh underwater environment, such as sound absorption, time-varying multipath spread, man-made and ambient noise, temperature and pressure dependent refraction, scattering and Doppler shift. Among all the challenges, the large ratio of propagation delay to packet duration (relative propagation delay (a)) is arguably the most difficult one to address in the Medium Access Control (MAC) layer. In this dissertation we focus on the examination and improvement of the MAC layer function in UWANs, based on a critical examination of existing techniques. Many MAC techniques have been proposed in recent years, however most of them assume the ratio of the propagation delay to the packet duration is negligibly small (a>1), these protocols perform poorly. This is because the large a leads to both a large negotiation delay in handshaking based protocols and the space-time uncertainty problem as the packets do not arrive at each node contemporarily. Some underwater-oriented protocols have been proposed which attempt to address these issues but the more successful rely on master nodes or a common understanding of geometry or time. We show by analysis and simulation that it is possible to eliminate collisions in ad-hoc networks with large relative propagation delay (a>>1) as well as improving the channel utilisation, without a common understanding of geometry or time. This technique is generally applicable, even for truly ad-hoc homogeneous peer-to-peer networks with no reliance on master nodes or other heterogeneous features. The mechanism is based on future scheduling with the inclusion of overhearing of RTS messages and allowing third-party objections to proposed transmissions. This MAC mechanism is immediately applicable in underwater acoustic networks (UWANs), and may find other uses, such as in space or very high rate terrestrial wireless networks. In summary, the key contributions of this study are: investigating the causes of the poor performance of existing MAC protocols in ad-hoc UWANs with large relative propagation delay, fully detailing the problem in order to propose analytic solutions, demonstrating how the MAC layer of an ad-hoc UWAN can eliminate packet collisions as well as improve channel utilisation without time synchronization or a network’s self-configuring phase to gain knowledge of the geometry, and verifying the utility of the proposals via both theoretical analysis and simulations

    Conditional Goal-oriented Trajectory Prediction for Interacting Vehicles with Vectorized Representation

    Full text link
    This paper aims to tackle the interactive behavior prediction task, and proposes a novel Conditional Goal-oriented Trajectory Prediction (CGTP) framework to jointly generate scene-compliant trajectories of two interacting agents. Our CGTP framework is an end to end and interpretable model, including three main stages: context encoding, goal interactive prediction and trajectory interactive prediction. First, a Goals-of-Interest Network (GoINet) is designed to extract the interactive features between agent-to-agent and agent-to-goals using a graph-based vectorized representation. Further, the Conditional Goal Prediction Network (CGPNet) focuses on goal interactive prediction via a combined form of marginal and conditional goal predictors. Finally, the Goaloriented Trajectory Forecasting Network (GTFNet) is proposed to implement trajectory interactive prediction via the conditional goal-oriented predictors, with the predicted future states of the other interacting agent taken as inputs. In addition, a new goal interactive loss is developed to better learn the joint probability distribution over goal candidates between two interacting agents. In the end, the proposed method is conducted on Argoverse motion forecasting dataset, In-house cut-in dataset, and Waymo open motion dataset. The comparative results demonstrate the superior performance of our proposed CGTP model than the mainstream prediction methods.Comment: 14 pages, 4 figure

    Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    Get PDF
    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In addition, the sound pressure level near the inlet pipe fluctuates under surge condition. The amplitude of sound pressure level fluctuation is increased with the rising of rotation speed. It is relative to the variation of discharge pressure of centrifugal compressor. The total sound pressure level under surge conditions is larger than that of steady working conditions. The change of sound pressure level reflects the changing of filed flow in centrifugal compressor. The signals of sound could be treated as a method to predict the occurring of surge. The experimental results will lay the foundation for the future research on the monitoring surge of centrifugal compressor and development of the surge control method

    A Multilevel Correction Scheme for the Steklov Eigenvalue Problem

    Get PDF
    Combining the correction technique proposed by Lin and Xie and the shifted inverse iteration, a multilevel correction scheme for the Steklov eigenvalue problem is proposed in this paper. The theoretical analysis and numerical experiments indicate that the scheme proposed in this paper is efficient for both simple and multiple eigenvalues of the Steklov eigenvalue problem

    Experimental Research on Surge and Stability Enhancement of Centrifugal Compressor

    Get PDF
    Centrifugal compressors are wildly used in many process industries. The stability of centrifugal compressor is one of the most important performances. When the compressor operates at the small volume flow rate, the working conditions of rotating stall and surge will occur, which lead to the unstable condition for centrifugal compressor. The signals of compressor are tested and analyzed when surge condition occurs in this paper. In addition, a new method to improve the compressor stability is proposed. It is called the active control casing treatment (ACCT) system. The flow in the compressor impeller is changed by the ACCT system and the stability of compressor is improved. The experimental researches have been done in this paper. The test results of ACCT system are also discussed in this paper

    Dynamic Performance of Valve in Reciprocating Compressor Used Stepless Capacity Regulation System

    Get PDF
    Capacity regulation system by controlling suction valve is useful for large scale reciprocating compressor in petrochemical engineering field. The dynamic performance of adjustment device influences the stability and accurancy of this system. In this paper, a mathematical model of adjustment device coupled with the motion of suction valve is built, and the dynamic performances of valve plate are simulated. The results show that the displacement of actuator increases with the hydraulic oil pressure until the valve plate is keeped to be opened. The closing process of valve plate is delayed when the hold time of actuator is larger enough. Although the gas flow rate and power consumption of comressor decrease with the relax angle of actuator, the power is also consumed when the gas is not discharged through the discharge valve. The closing time decreases with the reset spring stiffness but increases with the diameter of hydraulic

    Performance Analysis of Centrifugal Compressor under Multiple Working Conditions Based on Time-weighted Average

    Get PDF
    A method of compressor performance analysis under multiple working conditions is present based on the Time-weighted average (TWA). The main operation parameters can be obtained based the estimate of the working conditions and times of compressors. Then the comprehensive analysis method can be used to get the overall performance of compressor. The performance of a basic centrifugal compressor was simulation by CFD method in this paper. The overall performance of the centrifugal compressor is calculated under different working conditions. The TWA analysis method can be used as a tool to evaluate the overall performance of compressor. And it can also be used during the design phase to improve the performance of compressor fundamentally
    • …
    corecore