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Combining the correction technique proposed by Lin and Xie and the shifted inverse iteration, a multilevel correction scheme
for the Steklov eigenvalue problem is proposed in this paper. The theoretical analysis and numerical experiments indicate that the
scheme proposed in this paper is efficient for both simple and multiple eigenvalues of the Steklov eigenvalue problem.

1. Introduction

Steklov eigenvalue problems have important applications in
physics and engineering, for instance, in the study of surface
waves (see [1]), in the analysis of stability of mechanical oscil-
lators immersed in a viscous fluid (see [2]), and in the study of
the vibration modes of a structure in contact with an incom-
pressible fluid (see [3]). Thus, finite element methods for
Steklov eigenvalue problems have attracted the attention of
mathematics and physics community. Reference [4] first
studied the convergence and error estimation of finite ele-
ment approximations and [5–8]made in-depth research; after
that, [9–15] discussed the highly efficient finite elementmeth-
ods.

Recently, an efficient multilevel method based on the cor-
rection step was proposed by Lin and Xie [16, 17] and further
successfully applied to Helmholtz transmission eigenvalue
problems [18], convection-diffusion eigenvalue problems
[19], and the Steklov problem [15]. The multilevel correction
method proposed by Lin and Xie can be regarded as a com-
bination of two-grid method and the extended/generalized
finite element method which was developed in 1990s (see
[20, 21]).

The shifted inverse iteration method is a basic approach
for solving matrix eigenvalue problems (see Algorithm 27.3
in [22]). Now, two-grid methods based on the shifted inverse
iteration have been established (see [23, 24]) and applied to
Steklov eigenvalue problems (see [11]).

In this paper, we combine the correction technique of Lin
and Xie and the shifted inverse iteration to establish a new
efficientmultilevel scheme for the Steklov eigenvalue problem
which is suitable not only for simple eigenvalues but also for
multiple eigenvalues.Our scheme can be described as follows:
(1) solve the Steklov eigenvalue problem in the coarsest finite
element space; (2) implement the shifted inverse iteration
once in an augmented space by using the previously obtained
eigenvalue as the shift and eigenfunction as the iteration
initial value; (3) solve the Steklov eigenvalue problem again in
a new space which is constructed by combining the coarsest
finite element space with the obtained eigenfunction approx-
imation in (2), and then return to (2) for next loop. Further-
more, we prove the scheme can reach the optimal order that
the same as solving the corresponding boundary value prob-
lem. Our scheme is easy to realize under the package of iFEM
[25] with Matlab, and the numerical results are satisfactory.

In this paper, 𝐶 (with or without subscripts) denotes a
positive constant independent of mesh diameters and correc-
tion times.

2. Preliminaries

Let𝐻𝑠

(Ω) and𝐻𝑠

(𝜕Ω) denote the usual Sobolev spaces with
real-order 𝑠 with norms ‖ ⋅ ‖

𝑠
and ‖ ⋅ ‖

𝑠,𝜕Ω
on Ω and 𝜕Ω,

respectively. Here𝐻0
(𝜕Ω) = 𝐿

2
(𝜕Ω).

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 791298, 11 pages
http://dx.doi.org/10.1155/2015/791298



2 Mathematical Problems in Engineering

Consider the following Steklov eigenvalue problem:

−Δ𝑢+𝑢 = 0, in Ω,

𝜕𝑢

𝜕]
= 𝜆𝑢, on 𝜕Ω,

(1)

whereΩ ⊂ 𝑅
2 is a bounded polygonal domain with the max-

imum interior angle 𝜔 and 𝜕𝑢/𝜕] is the outward normal
derivative on 𝜕Ω.

The variational form of (1) is given as follows: find 𝜆 ∈ 𝑅

and 0 ̸= 𝑢 ∈ 𝐻
1
(Ω) such that 𝑎(𝑢, 𝑢) = 1 and

𝑎 (𝑢, V) = 𝜆𝑏 (𝑢, V) , ∀V ∈ 𝐻
1
(Ω) , (2)

where

𝑎 (𝑢, V) = ∫
Ω

∇𝑢 ⋅ ∇V+𝑢V 𝑑𝑥,

𝑏 (𝑢, V) = ∫
𝜕Ω

𝑢V 𝑑𝑠.
(3)

It is easy to know that 𝑎(⋅, ⋅) is a symmetric, continuous, and
𝐻

1
(Ω)-elliptic bilinear form on𝐻

1
(Ω) × 𝐻

1
(Ω) satisfying

𝑎 (𝑤, V) ≤ 𝐶1 ‖𝑤‖1 ‖V‖1 , ∀𝑤, V ∈ 𝐻
1
(Ω) ,

𝑎 (𝑤, 𝑤) ≥ 𝑐1 ‖𝑤‖
2
1 , ∀𝑤 ∈ 𝐻

1
(Ω) .

(4)

So we can use 𝑎(⋅, ⋅) and ‖ ⋅ ‖
𝑎
= 𝑎(⋅, ⋅)

1/2 as the inner product
and norm on𝐻

1
(Ω), respectively. We can also use 𝑏(⋅, ⋅) and

‖ ⋅ ‖
𝑏
= 𝑏(⋅, ⋅)

1/2 as the inner product and norm on 𝐿
2
(𝜕Ω),

respectively.
From [4, 26] we know that problem (2) has an eigenvalue

sequence {𝜆
𝑗
}
∞

1 satisfying

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑗
≤ ⋅ ⋅ ⋅ , lim

𝑗→∞

𝜆
𝑗
= ∞ (5)

and the corresponding eigenfunctions

𝑢1, 𝑢2, . . . , 𝑢𝑗, . . . , (6)

where 𝑎(𝑢
𝑖
, 𝑢
𝑗
) = 𝛿

𝑖𝑗
. The eigenvalues 𝜆

𝑗
are repeated accord-

ing to their multiplicity in the sequence {𝜆
𝑗
}
∞

1 .
LetT

ℎ
be a regular triangulation ofΩ. Denote the diam-

eter of an element 𝐾 ∈ T
ℎ
by ℎ

𝐾
and the mesh diameter

ℎ = max
𝐾∈Tℎ

ℎ
𝐾
. Let the finite element space 𝑉

ℎ
⊂ 𝐻

1
(Ω) be

a piecewise polynomial space onT
ℎ
.

Then the finite element approximation of (2) is given as
follows: find 𝜆

ℎ
∈ 𝑅 and 0 ̸= 𝑢

ℎ
∈ 𝑉

ℎ
such that ‖𝑢

ℎ
‖
𝑎
= 1 and

𝑎 (𝑢
ℎ
, V
ℎ
) = 𝜆

ℎ
𝑏 (𝑢

ℎ
, V
ℎ
) , ∀V

ℎ
∈ 𝑉

ℎ
. (7)

It is well known that (7) has eigenvalues (see, e.g., [4, 26])

0 < 𝜆1,ℎ ≤ 𝜆2,ℎ ≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑗,ℎ

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑁ℎ ,ℎ

(𝑁
ℎ
= dim𝑉

ℎ
) ,

(8)

and the associated eigenfunctions

𝑢1,ℎ, 𝑢2,ℎ, . . . , 𝑢𝑗,ℎ, . . . , 𝑢𝑁ℎ ,ℎ, (9)

where 𝑎(𝑢
𝑖,ℎ
, 𝑢
𝑗.ℎ
) = 𝛿

𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁

ℎ
.

Consider the following boundary value problems (10) and
(11) associated with (2) and (7), respectively.

Find 𝜓 ∈ 𝐻
1
(Ω) such that ‖𝜓‖

𝑎
= 1 and

𝑎 (𝜓, V) = 𝑏 (𝑓, V) , ∀V ∈ 𝐻
1
(Ω) . (10)

Find 𝜓
ℎ
∈ 𝑉

ℎ
such that ‖𝜓

ℎ
‖
𝑎
= 1 and

𝑎 (𝜓
ℎ
, V
ℎ
) = 𝑏 (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑉

ℎ
. (11)

The following regularities of the Steklov eigenvalue prob-
lem are valid.

Lemma 1. If 𝑓 ∈ 𝐿
2
(𝜕Ω), there exists a unique solution 𝜓 ∈

𝐻
1+𝑟/2

(Ω) to (10) satisfying
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩1+𝑟/2 ≤ 𝐶2
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩0,𝜕Ω . (12)

If 𝑓 ∈ 𝐻
1/2
(𝜕Ω), there exists a unique solution 𝜓 ∈ 𝐻

1+𝑟
(Ω)

to (10) satisfying
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩1+𝑟 ≤ 𝐶2
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1/2,𝜕Ω , (13)

where 𝐶2 is a positive constant.

Proof. See (4.10) in [27], Proposition 4.4 in [3], and Lemma
2.1 in [11].

By (13), we know that 𝑢
𝑗
∈ 𝐻

1+𝑟
(Ω), 𝑟 = 1, ifΩ is convex;

otherwise 𝑟 < 𝜋/𝜔 and 𝑟 can be closed to 𝜋/𝜔 arbitrarily.
Then, from (10) and (11), we can define two linear boun-

ded operators 𝑇 : 𝐿
2
(𝜕Ω) → 𝐻

1
(Ω) and 𝑇

ℎ
: 𝐿

2
(𝜕Ω) → 𝑉

ℎ

such that

𝑎 (𝑇𝑓, V) = 𝑏 (𝑓, V) , ∀V ∈ 𝐻
1
(Ω) , (14)

𝑎 (𝑇
ℎ
𝑓, V

ℎ
) = 𝑏 (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑉

ℎ
. (15)

It is obvious that 𝑇𝑓 and 𝑇
ℎ
𝑓 are the solution of (10) and

(11), respectively. We know that 𝑇 : 𝐻
1
(Ω) → 𝐻

1
(Ω) and

𝑇
ℎ
: 𝐻

1
(Ω) → 𝑉

ℎ
are completely continuous operators (see,

e.g., [11]). From [4, 26], we know that (2) and (7) have the fol-
lowing equivalent operator forms:

𝑇𝑢 = 𝜇𝑢,

𝑇
ℎ
𝑢
ℎ
= 𝜇

ℎ
𝑢
ℎ
,

(16)

where 𝜇 = 1/𝜆 and 𝜇
ℎ
= 1/𝜆

ℎ
. From (15), we can deduce that

𝑇
ℎ
: 𝐿

2
(𝜕Ω) → 𝑉

ℎ
is bounded; that is,

󵄩󵄩󵄩󵄩𝑇ℎ𝑓
󵄩󵄩󵄩󵄩𝑎 ≤ 𝐶3

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑏 , ∀𝑓 ∈ 𝐿

2
(𝜕Ω) ,

󵄩󵄩󵄩󵄩𝑇ℎ𝑓
󵄩󵄩󵄩󵄩𝑎 ≤ 𝐶3

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑎 , ∀𝑓 ∈ 𝐻

1
(Ω) ,

(17)

where 𝐶3 is a positive constant independent of ℎ and 𝑓.
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Denote the eigenfunction space corresponding to 𝜆
𝑖
by

𝑀(𝜆
𝑖
) = {𝑤

∈𝐻
1
(Ω) | 𝑤 is an eigenfunction of (2) corresponding to 𝜆

𝑖
and ‖𝑤‖

𝑎

= 1} .

(18)

Suppose that the multiplicity of 𝜆
𝑖
is 𝑞; that is, 𝜆

𝑖
= 𝜆

𝑖+1 =

⋅ ⋅ ⋅ = 𝜆
𝑖+𝑞−1. We use (𝜆

𝑗,ℎ
, 𝑢
𝑗,ℎ
) to denote the eigenpair

approximation for (𝜆
𝑗
, 𝑢
𝑗
), 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1. Let

𝑀
ℎ
(𝜆
𝑖
) = span {𝑢

𝑖,ℎ
, 𝑢
𝑖+1,ℎ, . . . , 𝑢𝑖+𝑞−1,ℎ} , (19)

and let𝑀(𝜇
𝑖
) = 𝑀(𝜆

𝑖
) and𝑀

ℎ
(𝜇
𝑖
) = 𝑀

ℎ
(𝜆
𝑖
).

Denote

𝜂
𝑎
(ℎ) = sup

𝑓∈𝐿
2
(𝜕Ω),‖𝑓‖0,𝜕Ω=1

inf
Vℎ∈𝑉ℎ

󵄩󵄩󵄩󵄩𝑇𝑓− V
ℎ

󵄩󵄩󵄩󵄩𝑎 ,

𝛿
ℎ
(𝜆
𝑖
) = sup

𝑤∈𝑀(𝜆𝑖)

inf
Vℎ∈𝑉ℎ

󵄩󵄩󵄩󵄩𝑤− V
ℎ

󵄩󵄩󵄩󵄩𝑎 .

(20)

From Lemma 1 and the interpolation error estimate, we get

𝜂
𝑎
(ℎ) 󳨀→ 0, as ℎ 󳨀→ 0. (21)

For two linear spaces 𝐴 and 𝐵, we define

dist (𝑢, 𝐴) = inf
V∈𝐴

‖𝑢 − V‖
𝑎
, ∀𝑢 ∈ 𝐵,

Θ̂ (𝐴, 𝐵) = sup
𝑤∈𝐴,‖𝑤‖𝑎=1

inf
V∈𝐵

‖𝑤− V‖
𝑎
,

Φ̂ (𝐴, 𝐵) = sup
𝑤∈𝐴,‖𝑤‖𝑏=1

inf
V∈𝐵

‖𝑤− V‖
𝑏
.

(22)

Define the gaps between𝑀(𝜆
𝑖
) and𝑀

ℎ
(𝜆
𝑖
) in ‖ ⋅ ‖

𝑎
as

Θ(𝑀(𝜆
𝑖
) ,𝑀

ℎ
(𝜆
𝑖
))

= max {Θ̂ (𝑀 (𝜆
𝑖
) ,𝑀

ℎ
(𝜆
𝑖
)) , Θ̂ (𝑀

ℎ
(𝜆
𝑖
) ,𝑀 (𝜆

𝑖
))}

(23)

and in ‖ ⋅ ‖
𝑏
as

Φ(𝑀(𝜆
𝑖
) ,𝑀

ℎ
(𝜆
𝑖
)) = max {Φ̂ (𝑀 (𝜆

𝑖
) ,𝑀

ℎ
(𝜆
𝑖
)) ,

Φ̂ (𝑀
ℎ
(𝜆
𝑖
) ,𝑀 (𝜆

𝑖
))} .

(24)

Lemma 2. The following estimates are valid:

Θ(𝑀(𝜆
𝑖
) ,𝑀

ℎ
(𝜆
𝑖
)) ≤ 𝐶 (𝜆

𝑖
) 𝛿
ℎ
(𝜆
𝑖
) , (25)

Φ(𝑀(𝜆
𝑖
) ,𝑀

ℎ
(𝜆
𝑖
)) ≤ 𝐶 (𝜆

𝑖
) 𝜂
𝑎
(ℎ) 𝛿

ℎ
(𝜆
𝑖
) , (26)

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗,ℎ

−𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (𝜆

𝑖
) 𝛿

2
ℎ
(𝜆
𝑖
) , (27)

for 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1. Here and hereafter 𝐶(𝜆
𝑖
) is a positive

constant depending on 𝜆
𝑖
but independent of ℎ.

Proof. See [4] or P. 699 in [26].

We need the following result (cf. [11, 23]) for the shifted
inverse iteration method.

Lemma 3. Let (𝜇0, 𝑢0) be an approximation for (𝜇
𝑖
, 𝑢
𝑖
), where

𝜇0 is not an eigenvalue of 𝑇
ℎ
, and 𝑢0 ∈ 𝑉

ℎ
with ‖𝑢0‖𝑎 = 1.

Suppose that dist(𝑢0,𝑀ℎ
(𝜇
𝑖
)) ≤ 1/2, |𝜇0 − 𝜇

𝑗,ℎ
| ≥ 𝜌/2 for 𝑗 ̸=

𝑖, . . . , 𝑖 + 𝑞 − 1, and 𝑢 ∈ 𝑉
ℎ
, 𝑢ℎ
𝑗
∈ 𝑉

ℎ
satisfy

(𝜇0 −𝑇ℎ) 𝑢 = 𝑢0,

𝑢
ℎ

𝑗
=

𝑢

‖𝑢‖
𝑎

.
(28)

Then
dist (𝑢ℎ

𝑗
,𝑀

ℎ
(𝜆
𝑖
))

≤ 𝐶4 (
󵄨󵄨󵄨󵄨𝜆0 −𝜆𝑖

󵄨󵄨󵄨󵄨 + 𝐶 (𝜆
𝑖
) 𝛿

2
ℎ
(𝜆
𝑖
)) dist (𝑢0,𝑀ℎ

(𝜆
𝑖
)) ,

(29)

where 𝜌 = min
𝜇𝑗 ̸=𝜇𝑖

|𝜇
𝑗
− 𝜇

𝑖
| is a separation constant of 𝜇

𝑖
and

𝐶4 is a positive constant independent of ℎ.

Proof. From (3.2) in [23], (2.25) in [11], and (27), we have

dist (𝑢ℎ
𝑗
,𝑀

ℎ
(𝜆
𝑖
))

≤
16
𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝜆0

−
1
𝜆
𝑗,ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

dist (𝑢0,𝑀ℎ
(𝜆
𝑖
))

≤ 𝐶4 (
󵄨󵄨󵄨󵄨𝜆0 −𝜆𝑖

󵄨󵄨󵄨󵄨 + 𝐶 (𝜆
𝑖
) 𝛿

2
ℎ
(𝜆
𝑖
)) dist (𝑢0,𝑀ℎ

(𝜆
𝑖
)) .

(30)

The proof is completed.

3. One Correction Step Based on the Shifted
Inverse Iteration

Wefirst generate a coarsemeshT
𝐻
with themesh size𝐻.The

coarse linear finite element space 𝑉
𝐻
is defined onT

𝐻
. Then

we define a sequence of triangulationsT
ℎ𝑘
of Ω determined

as follows. Set ℎ1 = 𝐻 and let T
ℎ𝑘

be obtained from T
ℎ𝑘−1

via regular refinement. Then we construct the linear finite
element spaces such that

𝑉
𝐻
= 𝑉

ℎ1
⊂ 𝑉

ℎ2
⊂ ⋅ ⋅ ⋅ ⊂ 𝑉

ℎ𝑛
,

𝛿
ℎ𝑘+1

(𝜆
𝑖
) = 𝛿

1+𝛾
ℎ𝑘

(𝜆
𝑖
) ,

(31)

where 𝛾 ∈ (0, 2].
Assume that we have the eigenpair approximations

(𝜆̃
𝑗,ℎ𝑘

, 𝑢̃
𝑗,ℎ𝑘

) ∈ R × 𝑉
𝐻,ℎ𝑘

(𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1), where
the eigenvalues {𝜆̃

𝑗,ℎ𝑘
}
𝑖+𝑞−1
𝑗=𝑖

are the approximations of the
eigenvalue 𝜆

𝑖
of (2) and 𝑉

𝐻,ℎ𝑘
is an extended space (see

Algorithm 4). Now we give the following one correction step
to improve the accuracy of the current eigenpair approxima-
tions {𝜆̃

𝑗,ℎ𝑘
, 𝑢̃
𝑗,ℎ𝑘

}
𝑖+𝑞−1
𝑗=𝑖

.

Algorithm 4 (one correction step).

Step 1. For 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1, do the following.
Find 𝑢

𝑗,ℎ𝑘+1
∈ 𝑉

ℎ𝑘+1
such that

𝑎 (𝑢
𝑗,ℎ𝑘+1

, V) − 𝜆̃
𝑖,ℎ𝑘

𝑏 (𝑢
𝑗,ℎ𝑘+1

, V) = 𝑏 (𝑢̃
𝑗,ℎ𝑘

, V) ,

∀V ∈ 𝑉
ℎ𝑘+1

,

(32)

and set 𝑢̂
𝑗,ℎ𝑘+1

= 𝑢
𝑗,ℎ𝑘+1

/‖𝑢
𝑗,ℎ𝑘+1

‖
𝑎
.
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Step 2. Define a new finite element space 𝑉
𝐻,ℎ𝑘+1

= 𝑉
𝐻
⊕

span{𝑢̂
𝑖,ℎ𝑘+1

, . . . , 𝑢̂
𝑖+𝑞−1,ℎ𝑘+1} and solve the following Steklov

eigenvalue problem.
Find (𝜆̃

𝑗,ℎ𝑘+1
, 𝑢̃
𝑗,ℎ𝑘+1

) ∈ R ×𝑉
𝐻,ℎ𝑘+1

such that ‖𝑢̃
𝑗,ℎ𝑘+1

‖
𝑎
= 1

and

𝑎 (𝑢̃
𝑗,ℎ𝑘+1

, V) = 𝜆̃
𝑗,ℎ𝑘+1

𝑏 (𝑢̃
𝑗,ℎ𝑘+1

, V) , ∀V ∈ 𝑉
𝐻,ℎ𝑘+1

. (33)

Output the eigenvalues {𝜆̃
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

and the corresponding
orthonormal eigenfunctions {𝑢̃

𝑗,ℎ𝑘+1
}
𝑖+𝑞−1
𝑗=𝑖

with respect to
𝑎(⋅, ⋅).

We adopt the notations in [15–17] to simplify and sum-
marize Algorithm 4 as

{𝜆̃
𝑗,ℎ𝑘+1

, 𝑢̃
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

= Correction (𝑉
𝐻
, {𝜆̃

𝑗,ℎ𝑘
, 𝑢̃
𝑗,ℎ𝑘

}
𝑖+𝑞−1
𝑗=𝑖

, 𝑉
ℎ𝑘+1

) .

(34)

Theorem 5. Suppose that 𝐻 is properly small. Assume the
eigenpairs {𝜆̃

𝑗,ℎ𝑘
, 𝑢̃
𝑗,ℎ𝑘

}
𝑖+𝑞−1
𝑗=𝑖

in Algorithm 4 have the following
error estimates:

Θ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘
(𝜆
𝑖
)) ≤ 𝐶0𝛿ℎ𝑘 (𝜆𝑖) ,

Φ (𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘
(𝜆
𝑖
)) ≤ 𝐶0𝜂𝑎 (𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
) ,

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
− 𝜆̃

𝑗,ℎ𝑘

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶0𝛿

2
ℎ𝑘

(𝜆
𝑖
) .

(35)

Then, after one correction step, the resulting eigenpair approxi-
mations {𝜆̃

𝑗,ℎ𝑘+1
, 𝑢̃
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

have the following error estimates:

Θ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘+1
(𝜆
𝑖
)) ≤ 𝐶0𝛿ℎ𝑘+1 (𝜆𝑖) , (36)

Φ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘+1
(𝜆
𝑖
)) ≤ 𝐶0𝜂𝑎 (𝐻) 𝛿

ℎ𝑘+1
(𝜆
𝑖
) , (37)

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
− 𝜆̃

𝑗,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶0𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) , (38)

where

𝐶0 = max {2𝑞3/2𝐶5𝐶
2
(𝜆
𝑖
) , 4𝑞3𝐶2

5𝐶
3
(𝜆
𝑖
) , 𝐶 (𝜆

𝑖
)} (39)

is a positive constant dependent on 𝜆
𝑖
but independent of 𝑘 and

ℎ, and 𝐶5 = 1 when 𝜆
𝑖
is a simple eigenvalue, and when 𝜆

𝑖
is a

multiple eigenvalue 𝐶5 is a positive constant independent of 𝑘
and ℎ (see Lemma 6 at the back).

Proof. From (35), we know there exists a basis {𝑢
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

of
𝑀(𝜆

𝑖
) such that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢̃

𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩𝑎
≤ 𝐶0𝛿ℎ𝑘 (𝜆𝑖) , (40)

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢̃

𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩𝑏
≤ 𝐶0𝜂𝑎 (𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
) , (41)

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
− 𝜆̃

𝑖,ℎ𝑘

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶0𝛿

2
ℎ𝑘

(𝜆
𝑖
) . (42)

By (15), we know that (32) is equivalent to the following:

𝑎 (𝑢
𝑗,ℎ𝑘+1

, V) − 𝜆̃
𝑖,ℎ𝑘

𝑎 (𝑇
ℎ𝑘+1

𝑢
𝑗,ℎ𝑘+1

, V)

= 𝑎 (𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

, V) , ∀V ∈ 𝑉
ℎ𝑘+1

,

(43)

and 𝑢̂
𝑗,ℎ𝑘+1

= 𝑢
𝑗,ℎ𝑘+1

/‖𝑢
𝑗,ℎ𝑘+1

‖
𝑎
; that is,

(
1

𝜆̃
𝑖,ℎ𝑘

−𝑇
ℎ𝑘+1

)𝑢
𝑗,ℎ𝑘+1

= 𝜆̃
−1
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

,

𝑢̂
𝑗,ℎ𝑘+1

=
𝑢
𝑗,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎

.

(44)

Select 𝑢
0
𝑗,ℎ𝑘+1

= 𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

/‖𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

‖
𝑎
; then

‖𝑢
0
𝑗,ℎ𝑘+1

‖
𝑎
= 1 and 𝑢

0
𝑗,ℎ𝑘+1

∈ 𝑉
ℎ𝑘+1

. Note that 𝜆̃−1
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

=

‖𝜆̃
−1
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

‖
𝑎
𝑢
0
𝑗,ℎ𝑘+1

differs from 𝑢
0
𝑗,ℎ𝑘+1

by only a constant;
then (32) is equivalent to

(
1

𝜆̃
𝑖,ℎ𝑘

−𝑇
ℎ𝑘+1

)𝑢
𝑗,ℎ𝑘+1

= 𝑢
0
𝑗,ℎ𝑘+1

,

𝑢̂
𝑗,ℎ𝑘+1

=
𝑢
𝑗,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎

.

(45)

Let 𝜆
𝑗,ℎ𝑘+1

be the 𝑗𝑡ℎ eigenvalue of (7) with ℎ = ℎ
𝑘+1; then

thanks to Lemma 3 we have

dist (𝑢̂
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
)) ≤

16
𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝜆̃
𝑖,ℎ𝑘

−
1

𝜆
𝑗,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
))

≤ 𝐶4 {
󵄨󵄨󵄨󵄨󵄨
𝜆̃
𝑖,ℎ𝑘

−𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
+ 𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

⋅ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
))

≤ {𝐶0𝐶4𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

⋅ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
)) .

(46)

Then, using the triangle inequality and Lemma 2, we get

dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
))

≤ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀 (𝜆
𝑖
)) +𝐶 (𝜆

𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) .

(47)

Combining (46) and (47), we obtain

dist (𝑢̂
𝑗,ℎ𝑘+1

,𝑀
ℎ𝑘+1

(𝜆
𝑖
))

≤ {𝐶0𝐶4𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

⋅ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀 (𝜆
𝑖
)) +𝐶4𝐶 (𝜆

𝑖
)

⋅ {𝐶0𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)} 𝛿

ℎ𝑘+1
(𝜆
𝑖
) .

(48)

Let the eigenvectors {𝑢
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

be an orthonormal basis
of𝑀

ℎ𝑘+1
(𝜆
𝑖
) with respect to 𝑎(⋅, ⋅). Denote

𝑢̂
∗

𝑗
=

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢̂
𝑗,ℎ𝑘+1

, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
𝑚,ℎ𝑘+1

; (49)
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then

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

− 𝑢̂
∗

𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
= dist (𝑢̂

𝑗,ℎ𝑘+1
,𝑀

ℎ𝑘+1
(𝜆
𝑖
)) . (50)

By (25), there exists {𝑢󸀠
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

⊂ 𝑀(𝜆
𝑖
) satisfying

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗,ℎ𝑘+1

−𝑢
󸀠

𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
≤ 𝐶 (𝜆

𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) . (51)

Let

𝑢̂
𝑗
=

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢̂
𝑗,ℎ𝑘+1

, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
󸀠

𝑚
. (52)

Noting that {𝑢̃
𝑗,ℎ𝑘

}
𝑖+𝑞−1
𝑗=𝑖

is linearly independent, it can be
deduced from (45), (49), and (52) that {𝑢̂

𝑗
}
𝑖+𝑞−1
𝑗=𝑖

is linearly
independent.

Using (49), (51), and (52), we deduce that

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗
− 𝑢̂

∗

𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢̂
𝑗,ℎ𝑘+1

, 𝑢
𝑚,ℎ𝑘+1

) (𝑢
󸀠

𝑚
−𝑢

𝑚,ℎ𝑘+1
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

≤ (

𝑖+𝑞−1

∑

𝑚=𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠

𝑚
−𝑢

𝑚,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩

2
𝑎

)

1/2

≤ {

𝑖+𝑞−1

∑

𝑚=𝑖

𝐶
2
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

1/2

≤ 𝑞
1/2
𝐶 (𝜆

𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) .

(53)

Thus, using the triangle inequality, we have

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

− 𝑢̂
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
≤ dist (𝑢̂

𝑗,ℎ𝑘+1
,𝑀

ℎ𝑘+1
(𝜆
𝑖
))

+ 𝑞
1/2
𝐶 (𝜆

𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) ,

(54)

which together with (48) yields

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

− 𝑢̂
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
≤ {𝐶4𝐶0𝛿

2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

⋅ dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀 (𝜆
𝑖
)) +𝐶 (𝜆

𝑖
)

⋅ {𝐶4𝐶0𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) + 𝑞

1/2
}

⋅ 𝛿
ℎ𝑘+1 (𝜆𝑖) .

(55)

Noting that ‖𝑢
𝑗
‖
𝑎
= 1 and using Lemma 3.1 in [23], we

have

dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀 (𝜆
𝑖
)) ≤

󵄩󵄩󵄩󵄩󵄩
𝑢
0
𝑗,ℎ𝑘+1

−𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎

≤ 2 󵄩󵄩󵄩󵄩󵄩𝜆̃𝑖,ℎ𝑘𝑇ℎ𝑘+1 𝑢̃𝑗,ℎ𝑘 −𝑢𝑗
󵄩󵄩󵄩󵄩󵄩𝑎
.

(56)

Since 𝑢
𝑗
= 𝜆

𝑗
𝑇𝑢

𝑗
and ‖𝑢̃

𝑗,ℎ𝑘
‖
𝑎
= 1, from (17), (41), and (42),

we have
󵄩󵄩󵄩󵄩󵄩
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
=
󵄩󵄩󵄩󵄩󵄩
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝜆
𝑗
𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

+𝜆
𝑗
𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝜆
𝑗
𝑇
ℎ𝑘+1

𝑢
𝑗
+𝜆

𝑗
𝑇
ℎ𝑘+1

𝑢
𝑗
−𝜆

𝑗
𝑇𝑢

𝑗

󵄩󵄩󵄩󵄩󵄩𝑎

≤
󵄨󵄨󵄨󵄨󵄨
𝜆̃
𝑖,ℎ𝑘

−𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩𝑎

+𝜆
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑇
ℎ𝑘+1

(𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
)
󵄩󵄩󵄩󵄩󵄩𝑎
+
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑗
(𝑇
ℎ𝑘+1

−𝑇) 𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎

≤ 𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶3𝜆𝑖

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑏
+ 𝛿

ℎ𝑘+1
(𝜆
𝑖
)

≤ 𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
) +𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
)

+ 𝛿
ℎ𝑘+1

(𝜆
𝑖
) .

(57)

From (56) and (57), we get

dist (𝑢0
𝑗,ℎ𝑘+1

,𝑀 (𝜆
𝑖
)) ≤ 2𝐶0𝐶3𝛿

2
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿
ℎ𝑘
(𝜆
𝑖
)

+ 2𝛿
ℎ𝑘+1

(𝜆
𝑖
) .

(58)

Combining (55) and (58), reminding that 𝛿
ℎ𝑘+1

= 𝛿
1+𝛾
ℎ𝑘

, 𝛾 ∈

(0, 2], we can obtain
󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

− 𝑢̂
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
≤ {𝐶0𝐶4𝛿

2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)}

⋅ {2𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿
ℎ𝑘
(𝜆
𝑖
) + 2𝛿

ℎ𝑘+1
(𝜆
𝑖
)}

+ {𝐶0𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶

2
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)

+ 𝑞
1/2
𝐶 (𝜆

𝑖
)} 𝛿

ℎ𝑘+1 (𝜆𝑖) = 2𝐶2
0𝐶3𝐶4𝛿

1+𝛾
ℎ𝑘

(𝜆
𝑖
)

⋅ 𝛿
3−𝛾
ℎ𝑘

(𝜆
𝑖
) + 2𝐶2

0𝐶3𝐶4𝜆𝑖𝜂𝑎 (𝐻) 𝛿
1+𝛾
ℎ𝑘

(𝜆
𝑖
) 𝛿

2−𝛾
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶0𝐶4𝛿
2
ℎ𝑘

(𝜆
𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) + 2𝐶0𝐶3𝐶4𝐶 (𝜆

𝑖
)

⋅ 𝛿
2
ℎ𝑘

(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) + 2𝐶0𝐶3𝐶4𝐶 (𝜆

𝑖
) 𝜆

𝑖
𝜂
𝑎
(𝐻)

⋅ 𝛿
ℎ𝑘
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) + 2𝐶4𝐶 (𝜆

𝑖
) 𝛿

3
ℎ𝑘+1

(𝜆
𝑖
)

+ {𝐶0𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
ℎ𝑘

(𝜆
𝑖
) +𝐶4𝐶

2
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)

+ 𝑞
1/2
𝐶 (𝜆

𝑖
)} 𝛿

ℎ𝑘+1 (𝜆𝑖) = {2𝐶2
0𝐶3𝐶4𝛿

3−𝛾
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶2
0𝐶3𝐶4𝜆𝑖𝜂𝑎 (𝐻) 𝛿

2−𝛾
ℎ𝑘

(𝜆
𝑖
) + 2𝐶0𝐶4𝛿

2
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶0𝐶3𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
ℎ𝑘

(𝜆
𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
)

+ 2𝐶0𝐶3𝐶4𝐶 (𝜆
𝑖
) 𝜆

𝑖
𝜂
𝑎
(𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
)

+ 2𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) +𝐶0𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
ℎ𝑘

(𝜆
𝑖
)

+𝐶4𝐶
2
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) + 𝑞

1/2
𝐶 (𝜆

𝑖
)} 𝛿

ℎ𝑘+1 (𝜆𝑖)
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≤ {2𝐶2
0𝐶3𝐶4𝛿𝐻 (𝜆

𝑖
) + 2𝐶2

0𝐶3𝐶4𝜆𝑖𝜂𝑎 (𝐻)

+ 2𝐶0𝐶4𝛿
2
𝐻
(𝜆
𝑖
) + 2𝐶0𝐶3𝐶4𝐶 (𝜆

𝑖
) 𝛿

3
𝐻
(𝜆
𝑖
)

+ 2𝐶0𝐶3𝐶4𝐶 (𝜆
𝑖
) 𝜆

𝑖
𝜂
𝑎
(𝐻) 𝛿

2
𝐻
(𝜆
𝑖
)

+ 2𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
) +𝐶0𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
)

+𝐶4𝐶
2
(𝜆
𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
) + 𝑞

1/2
𝐶 (𝜆

𝑖
)} 𝛿

ℎ𝑘+1
(𝜆
𝑖
) .

(59)

When𝐻 is properly small, we have

2𝐶2
0𝐶3𝐶4𝛿𝐻 (𝜆

𝑖
) + 2𝐶2

0𝐶3𝐶4𝜆𝑖𝜂𝑎 (𝐻)

+ 2𝐶0𝐶4𝛿
2
𝐻
(𝜆
𝑖
) + 2𝐶0𝐶3𝐶4𝐶 (𝜆

𝑖
) 𝛿

3
𝐻
(𝜆
𝑖
)

+ 2𝐶0𝐶3𝐶4𝐶 (𝜆
𝑖
) 𝜆

𝑖
𝜂
𝑎
(𝐻) 𝛿

2
𝐻
(𝜆
𝑖
)

+ 2𝐶4𝐶 (𝜆
𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
) +𝐶0𝐶4𝐶 (𝜆

𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
)

+𝐶4𝐶
2
(𝜆
𝑖
) 𝛿

2
𝐻
(𝜆
𝑖
) ≤ 𝑞

1/2
𝐶 (𝜆

𝑖
) ;

(60)

then we obtain the following error estimate:

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

− 𝑢̂
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
≤ 2𝑞1/2𝐶 (𝜆

𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) . (61)

Now we come to estimate the error for the eigenpairs
{𝜆̃
𝑗,ℎ𝑘+1

, 𝑢̃
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

. Based on the error estimate theory of
eigenvalue problem by finite element methods (see, e.g., [4,
26]), fromLemmas 2 and 6 at the back, (61), and the definition
of the space 𝑉

𝐻,ℎ𝑘+1
, we have the following estimates:

Θ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘+1
(𝜆
𝑖
)) ≤ 𝐶 (𝜆

𝑖
)

⋅ sup
𝑤∈𝑀(𝜆𝑖)

inf
V𝐻,ℎ𝑘+1∈𝑉𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑤− V

𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎
≤ 𝐶 (𝜆

𝑖
)

⋅ sup
𝛽𝑗

{

{

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖+𝑞−1

∑

𝑗=𝑖

𝛽
𝑗
𝑢̂
𝑗
−

𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
𝑚
𝑢̂
𝑚,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

}

}

}

≤ 𝐶 (𝜆
𝑖
)

⋅ sup
𝛽𝑗

𝑖+𝑞−1

∑

𝑗=𝑖

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗
− 𝑢̂

𝑗,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎
≤ 𝑞𝐶5𝐶 (𝜆

𝑖
)

⋅max {󵄩󵄩󵄩󵄩󵄩𝑢̂𝑖,ℎ𝑘+1 − 𝑢̂𝑖
󵄩󵄩󵄩󵄩󵄩𝑎
, . . . ,

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑖+𝑞−1,ℎ𝑘+1 − 𝑢̂𝑖+𝑞−1

󵄩󵄩󵄩󵄩󵄩𝑎
}

≤ 2𝑞3/2𝐶5𝐶
2
(𝜆
𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) ,

Φ (𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑘+1
(𝜆
𝑖
)) ≤ 𝐶 (𝜆

𝑖
)

⋅ sup
𝑤∈𝑀(𝜆𝑖)

inf
V𝐻,ℎ𝑘+1∈𝑉𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑤− V

𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑏
≤ 𝐶 (𝜆

𝑖
)

⋅ 𝜂
𝑎
(𝐻) sup

𝑤∈𝑀(𝜆𝑖)

inf
V𝐻,ℎ𝑘+1∈𝑉𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑤− V

𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎

≤ 2𝑞3/2𝐶5𝐶
2
(𝜆
𝑖
) 𝜂
𝑎
(𝐻) 𝛿

ℎ𝑘+1
(𝜆
𝑖
) ,

(62)

where

𝜂
𝑎
(𝐻) = sup

𝑓∈𝐿
2
(𝜕Ω),‖𝑓‖0,𝜕Ω=1

inf
V∈𝑉𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩𝑇𝑓− V󵄩󵄩󵄩󵄩𝑎

≤ sup
𝑓∈𝐿

2
(𝜕Ω),‖𝑓‖0,𝜕Ω=1

inf
V∈𝑉𝐻

󵄩󵄩󵄩󵄩𝑇𝑓− V󵄩󵄩󵄩󵄩𝑎 = 𝜂
𝑎
(𝐻) .

(63)

From (62) and (63), we obtain (36) and (37).
From (27) and (36), we have

󵄨󵄨󵄨󵄨󵄨
𝜆̃
𝑗,ℎ𝑘+1

−𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (𝜆
𝑖
)( sup

𝑤∈𝑀(𝜆𝑖)

inf
V𝐻,ℎ𝑘+1∈𝑉𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑤− V

𝐻,ℎ𝑘+1

󵄩󵄩󵄩󵄩󵄩𝑎
)

2

≤ 4𝑞3𝐶2
5𝐶

3
(𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
) .

(64)

Hence, estimate (38) holds.

Lemma 6. For the multiple eigenvalue 𝜆
𝑖
, assume that 𝜆̃

𝑗,ℎ𝑘
−

𝜆
𝑖
= 𝑂(𝛿

2
ℎ𝑘

(𝜆
𝑖
)) and 𝛿

ℎ𝑘+1
(𝜆
𝑖
) = 𝛿

ℎ𝑘
(𝜆
𝑖
)
1+𝜀, where 𝑗 = 𝑖, . . . , 𝑖+

𝑞 − 1, 𝜀 ∈ (𝜉, 2], and 𝜉 ∈ (0, 2) is a positive constant. Let
{𝑢̂
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

be defined as (52); then {𝑢̂
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

is a basis of𝑀(𝜆
𝑖
).

For any 𝑤 ∈ 𝑀(𝜆
𝑖
),

𝑤 =

𝑖+𝑞−1

∑

𝑗=𝑖

𝛽
𝑗
𝑢̂
𝑗
, (65)

there holds

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶5, 𝑓𝑜𝑟 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1, (66)

where 𝐶5 is a constant independent of 𝑘 and ℎ.

Proof. From the proof ofTheorem 5 we know that {𝑢̂
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

is
linearly independent, so it can be taken as a basis of 𝑀(𝜆

𝑖
).

For any 𝑤 ∈ 𝑀(𝜆
𝑖
), 𝑤 = ∑

𝑖+𝑞−1
𝑗=𝑖

𝛽
𝑗
𝑢̂
𝑗
, we have

1 = ‖𝑤‖
2
𝑎
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
𝑚
𝑢̂
𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑎

=

𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
2
𝑚

󵄩󵄩󵄩󵄩𝑢̂𝑚
󵄩󵄩󵄩󵄩

2
𝑎
+

𝑖+𝑞−1

∑

𝑚,𝑗=𝑖,𝑚 ̸=𝑗

𝛽
𝑚
𝛽
𝑗
𝑎 (𝑢̂

𝑚
, 𝑢̂
𝑗
) .

(67)

Noticing that the norm of self-adjoint operator is equal to its
spectral radius, then

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1󵄩󵄩󵄩󵄩󵄩󵄩𝑎
= (min

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜇0 −𝜇𝑗,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨
)

−1

≡ (
󵄨󵄨󵄨󵄨󵄨
𝜇0 −𝜇𝑗0 ,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨
)
−1
,

(68)

where 𝜇0 = 1/𝜆0 = 1/𝜆̃
𝑖,ℎ𝑘

.
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For 𝑢
𝑗
in (40)-(41), by calculation, we deduce

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

− (𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
(𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
) + (𝜇0

−𝑇
ℎ𝑘+1

)
−1
𝑢
𝑗
− (𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝜇0

−𝑇
ℎ𝑘+1

)
−1
(𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
) + (𝜇0 −𝑇ℎ𝑘+1)

−1

⋅ {𝑢
𝑗
−

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
𝑚,ℎ𝑘+1

}+ (𝜇0

−𝑇
ℎ𝑘+1

)
−1
{

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
𝑚,ℎ𝑘+1

}− (𝜇0

−𝜇
𝑗0 ,ℎ𝑘+1

)
−1
{𝑢

𝑗
−

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
𝑚,ℎ𝑘+1

}

− (𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)
−1
{

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) 𝑢
𝑚,ℎ𝑘+1

}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
(𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
)
󵄩󵄩󵄩󵄩󵄩󵄩𝑎
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0

−𝑇
ℎ𝑘+1

)
−1󵄩󵄩󵄩󵄩󵄩󵄩𝑎

𝛿
ℎ𝑘+1

(𝜆
𝑖
) +

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1󵄨󵄨󵄨󵄨󵄨󵄨
𝛿
ℎ𝑘+1

(𝜆
𝑖
)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) (𝜇0 −𝜇𝑚,ℎ𝑘+1)
−1
𝑢
𝑚,ℎ𝑘+1

}

−{

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

) (𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)
−1
𝑢
𝑚,ℎ𝑘+1

}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
(𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
)
󵄩󵄩󵄩󵄩󵄩󵄩𝑎
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0

−𝑇
ℎ𝑘+1

)
−1󵄩󵄩󵄩󵄩󵄩󵄩𝑎

𝛿
ℎ𝑘+1

(𝜆
𝑖
) +

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1󵄨󵄨󵄨󵄨󵄨󵄨
𝛿
ℎ𝑘+1

(𝜆
𝑖
)

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

𝑖+𝑞−1

∑

𝑚=𝑖

𝑎 (𝑢
𝑗
, 𝑢
𝑚,ℎ𝑘+1

)

⋅ [

[

(𝜇0 − 𝜇
𝑚,ℎ𝑘+1

)
−1

(𝜇0 − 𝜇
𝑗0 ,ℎ𝑘+1

)
−1 − 1]

]

𝑢
𝑚,ℎ𝑘+1

}

}

}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

,

(69)

where

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜇0 − 𝜇
𝑚,ℎ𝑘+1

)
−1

(𝜇0 − 𝜇
𝑗0 ,ℎ𝑘+1

)
−1 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇0 − 𝜇
𝑗0 ,ℎ𝑘+1

𝜇0 − 𝜇
𝑚,ℎ𝑘+1

− 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇
𝑚,ℎ𝑘+1

− 𝜇
𝑗0 ,ℎ𝑘+1

𝜇0 − 𝜇
𝑚,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(70)

Since 𝜆̃
𝑗,ℎ𝑘

− 𝜆
𝑖
= 𝑂(𝛿

2
ℎ𝑘

(𝜆
𝑖
)), there exists 𝐶󸀠5 such that

𝜆̃
𝑗,ℎ𝑘

−𝜆
𝑖
≥ 𝐶

󸀠

5𝛿
2
ℎ𝑘

(𝜆
𝑖
) , for 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1. (71)

Noting that 𝜇0 = 1/𝜆0 = 1/𝜆̃
𝑖,ℎ𝑘

, then, for𝑚 = 𝑖, . . . , 𝑖 + 𝑞 − 1,
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇
𝑚,ℎ𝑘+1

− 𝜇
𝑗0 ,ℎ𝑘+1

𝜇0 − 𝜇
𝑚,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆0 (𝜆𝑗0,ℎ𝑘+1 − 𝜆
𝑚,ℎ𝑘+1

)

𝜆
𝑗0,ℎ𝑘+1

(𝜆
𝑚,ℎ𝑘+1

− 𝜆0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

2𝜆0𝐶 (𝜆
𝑖
) 𝛿

2
ℎ𝑘+1

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)) 𝛿

2
ℎ𝑘

(𝜆
𝑖
)

=

2𝜆0𝐶 (𝜆
𝑖
) 𝛿

2+2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)) 𝛿

2
ℎ𝑘

(𝜆
𝑖
)

= 2
𝜆0𝐶 (𝜆

𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

.

(72)

From (45), we have

𝑢
𝑗,ℎ𝑘+1 = (𝜇0 −𝑇ℎ𝑘+1)

−1 𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩𝑎

,

𝑢̂
𝑗,ℎ𝑘+1

=

(𝜇0 − 𝑇
ℎ𝑘+1

)
−1
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝑇

ℎ𝑘+1
)
−1
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

.

(73)

Since 𝑉
𝐻,ℎ𝑘

⊂ 𝑉
ℎ𝑘
⊂ 𝑉

ℎ𝑘+1
, we get

𝜆̃
𝑗,ℎ𝑘

≥ 𝜆
𝑗,ℎ𝑘+1

, for 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1. (74)

Note that

𝑢
𝑗
=

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 − 𝜇

𝑗0 ,ℎ𝑘+1
)
−1󵄨󵄨󵄨󵄨󵄨󵄨

𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝜇

𝑗0 ,ℎ𝑘+1
)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

=

− (𝜇0 − 𝜇
𝑗0 ,ℎ𝑘+1

)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝜇

𝑗0 ,ℎ𝑘+1
)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

; (75)

then, from Lemma 3.1 in [23], (57), and (68)–(73), we get

󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

+𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝜇0 − 𝑇
ℎ𝑘+1

)
−1
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝑇

ℎ𝑘+1
)
−1
𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

−

(𝜇0 − 𝜇
𝑗0 ,ℎ𝑘+1

)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝜇

𝑗0 ,ℎ𝑘+1
)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑎

≤ 2

⋅
1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 − 𝜇

𝑗0 ,ℎ𝑘+1
)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
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⋅ 𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

− (𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)
−1
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑎
≤ 2 󵄨󵄨󵄨󵄨󵄨𝜇0

−𝜇
𝑗0 ,ℎ𝑘+1

󵄨󵄨󵄨󵄨󵄨

{

{

{

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1
(𝜆̃
𝑖,ℎ𝑘

𝑇
ℎ𝑘+1

𝑢̃
𝑗,ℎ𝑘

−𝑢
𝑗
)
󵄩󵄩󵄩󵄩󵄩󵄩𝑎

+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝜇0 −𝑇ℎ𝑘+1)

−1󵄩󵄩󵄩󵄩󵄩󵄩𝑎
𝛿
ℎ𝑘+1

(𝜆
𝑖
) +

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1󵄨󵄨󵄨󵄨󵄨󵄨

⋅ 𝛿
ℎ𝑘+1

(𝜆
𝑖
) +

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜇0 −𝜇𝑗0 ,ℎ𝑘+1)

−1󵄨󵄨󵄨󵄨󵄨󵄨

⋅

2𝑞𝜆0𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

}

}

}

≤ 2 󵄩󵄩󵄩󵄩󵄩𝜆̃𝑖,ℎ𝑘𝑇ℎ𝑘+1 𝑢̃𝑗,ℎ𝑘 −𝑢𝑗
󵄩󵄩󵄩󵄩󵄩𝑎
+ 4𝛿

ℎ𝑘+1
(𝜆
𝑖
)

+

4𝑞𝜆0𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

≤ 2𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
)

+ 2𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿
ℎ𝑘
(𝜆
𝑖
) + 6𝛿

ℎ𝑘+1
(𝜆
𝑖
) + 4𝑞

⋅

𝜆0𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

.

(76)

For 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑖 + 𝑞 − 1, from (76), we have

󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚,ℎ𝑘+1
, 𝑢̂
𝑗,ℎ𝑘+1

)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚,ℎ𝑘+1
+𝑢

𝑚
, 𝑢̂
𝑗,ℎ𝑘+1

)

− 𝑎 (𝑢
𝑚
, 𝑢̂
𝑗,ℎ𝑘+1

)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚,ℎ𝑘+1
+𝑢

𝑚
, 𝑢̂
𝑗,ℎ𝑘+1

)

− 𝑎 (𝑢
𝑚
, 𝑢̂
𝑗,ℎ𝑘+1

+𝑢
𝑗
) + 𝑎 (𝑢

𝑚
, 𝑢
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑚,ℎ𝑘+1

+𝑢
𝑚

󵄩󵄩󵄩󵄩󵄩𝑎
+
󵄩󵄩󵄩󵄩󵄩
𝑢̂
𝑗,ℎ𝑘+1

+𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑎
+
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢

𝑚
, 𝑢
𝑗
)
󵄨󵄨󵄨󵄨󵄨

≤ 4𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
) + 4𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
)

+ 12𝛿
ℎ𝑘+1

(𝜆
𝑖
) + 8𝑞

𝜆0𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

+
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢

𝑚
, 𝑢
𝑗
)
󵄨󵄨󵄨󵄨󵄨
.

(77)

By 𝑎(𝑢̃
𝑚,ℎ𝑘

, 𝑢̃
𝑗,ℎ𝑘

) = 𝛿
𝑚𝑗
, from (40), we get

󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢

𝑚
, 𝑢
𝑗
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢

𝑚
− 𝑢̃

𝑚,ℎ𝑘
, 𝑢
𝑗
)

+ 𝑎 (𝑢̃
𝑚,ℎ𝑘

, 𝑢
𝑗
− 𝑢̃

𝑗,ℎ𝑘
) + 𝑎 (𝑢̃

𝑚,ℎ𝑘
, 𝑢̃
𝑗,ℎ𝑘

)
󵄨󵄨󵄨󵄨󵄨

≤ 2𝐶0𝛿ℎ𝑘 (𝜆𝑖) + 𝛿𝑚𝑗;

(78)

thus
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚,ℎ𝑘+1
, 𝑢̂
𝑗,ℎ𝑘+1

)
󵄨󵄨󵄨󵄨󵄨

≤ 4𝐶0𝐶3𝛿
2
ℎ𝑘

(𝜆
𝑖
) + 4𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿

ℎ𝑘
(𝜆
𝑖
)

+ 12𝛿
ℎ𝑘+1

(𝜆
𝑖
)

+ 8𝑞
𝜆0𝐶 (𝜆

𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

+ 2𝐶0𝛿ℎ𝑘 (𝜆𝑖) + 𝛿𝑚𝑗;

(79)

then, from (61) and (79), we have
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚
, 𝑢̂
𝑗
)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚
− 𝑢̂

𝑚,ℎ𝑘+1
, 𝑢̂
𝑗
)

+ 𝑎 (𝑢̂
𝑚,ℎ𝑘+1

, 𝑢̂
𝑗
− 𝑢̂

𝑗,ℎ𝑘+1
) + 𝑎 (𝑢̂

𝑚,ℎ𝑘+1
, 𝑢̂
𝑗,ℎ𝑘+1

)
󵄨󵄨󵄨󵄨󵄨

≤ 4𝑞1/2𝐶 (𝜆
𝑖
) 𝛿
ℎ𝑘+1

(𝜆
𝑖
) + 4𝐶0𝐶3𝛿

2
ℎ𝑘

(𝜆
𝑖
)

+ 4𝐶0𝐶3𝜆𝑖𝜂𝑎 (𝐻) 𝛿
ℎ𝑘
(𝜆
𝑖
) + 12𝛿

ℎ𝑘+1
(𝜆
𝑖
) + 8𝑞

⋅

𝜆0𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
)

𝜆
𝑗0 ,ℎ𝑘+1

(𝐶
󸀠

5 − 𝐶 (𝜆
𝑖
) 𝛿

2𝜀
ℎ𝑘

(𝜆
𝑖
))

+ 2𝐶0𝛿ℎ𝑘 (𝜆𝑖)

+ 𝛿
𝑚𝑗
.

(80)

Thus there exists 𝐶󸀠󸀠5 such that

󵄨󵄨󵄨󵄨󵄨
𝑎 (𝑢̂

𝑚
, 𝑢̂
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󸀠󸀠

5 {𝛿ℎ𝑘 (𝜆𝑖)}
min{1,2𝜀}

, 𝑚 ̸= 𝑗. (81)

Then, from (67), we have
𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
2
𝑚
= 1−

𝑖+𝑞−1

∑

𝑚,𝑗=𝑖,𝑚 ̸=𝑗

𝛽
𝑚
𝛽
𝑗
𝑎 (𝑢̂

𝑚
, 𝑢̂
𝑗
)

≤ 1+ 𝑞
𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
2
𝑚
𝐶
󸀠󸀠

5 {𝛿ℎ𝑘 (𝜆𝑖)}
min{1,2𝜀}

,

(82)

thus, we get

𝑖+𝑞−1

∑

𝑚=𝑖

𝛽
2
𝑚
≤

1

1 − 𝑞𝐶
󸀠󸀠

5 {𝛿ℎ𝑘 (𝜆𝑖)}
min{1,2𝜀} ; (83)

that is, {𝛽
𝑚
}
𝑖+𝑞−1
𝑚=𝑖

are uniformly bounded from above with
respect to ℎ

𝑘
.

4. Multilevel Correction Scheme for
the Steklov Eigenvalue Problem

Based on Algorithm 4, we introduce the following multilevel
correction scheme.

Algorithm 7 (multilevel correction scheme).

Step 1. Construct a series of finite element spaces 𝑉
𝐻

=

𝑉
ℎ1
, 𝑉
ℎ2
, . . . , 𝑉

ℎ𝑛
such that (31) holds.
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Step 2. Compute 𝑞 eigenpair approximations {𝜆
𝑗,ℎ1

, 𝑢
𝑗,ℎ1

}
𝑖+𝑞−1
𝑗=𝑖

for the eigenpairs {𝜆
𝑗
, 𝑢
𝑗
}
𝑖+𝑞−1
𝑗=𝑖

by solving the following Stek-
lov eigenvalue problem.

Find (𝜆
𝑗,ℎ1

, 𝑢
𝑗,ℎ1

) ∈ R × 𝑉
ℎ1
such that 𝑎(𝑢

𝑗,ℎ1
, 𝑢
𝑗,ℎ1

) = 1
and

𝑎 (𝑢
𝑗,ℎ1

, V) = 𝜆
𝑗,ℎ1

𝑏 (𝑢
𝑗,ℎ1

, V) , ∀V ∈ 𝑉
ℎ1
. (84)

Step 3. 𝜆̃
𝑗,ℎ1

⇐ 𝜆
𝑗,ℎ1

and 𝑢̃
𝑗,ℎ1

⇐ 𝑢
𝑗,ℎ1

, for 𝑗 = 𝑖, . . . , 𝑖 + 𝑞 − 1.
For 𝑘 = 1, . . . , 𝑛 − 1, do

{𝜆̃
𝑗,ℎ𝑘+1

, 𝑢̃
𝑗,ℎ𝑘+1

}
𝑖+𝑞−1
𝑗=𝑖

= Correction (𝑉
𝐻
, {𝜆̃

𝑗,ℎ𝑘
, 𝑢̃
𝑗,ℎ𝑘

}
𝑖+𝑞−1
𝑗=𝑖

, 𝑉
ℎ𝑘+1

) .

(85)

Finally, we obtain 𝑞 eigenpair approximations {𝜆̃
𝑗,ℎ𝑛

,

𝑢̃
𝑗,ℎ𝑛

}
𝑖+𝑞−1
𝑗=𝑖

∈ R × 𝑉
𝐻,ℎ𝑛

.

Theorem 8. After implementing Algorithm 7, if 𝐻 is small
enough, the resultant eigenpair approximations {𝜆̃

𝑗,ℎ𝑛
, 𝑢̃
𝑗,ℎ𝑛

}
𝑖+𝑞−1
𝑗=𝑖

have the following error estimates:

Θ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑛
(𝜆
𝑖
)) ≤ 𝐶0𝛿ℎ𝑛 (𝜆𝑖) , (86)

Φ(𝑀(𝜆
𝑖
) ,𝑀

𝐻,ℎ𝑛
(𝜆
𝑖
)) ≤ 𝐶0𝜂𝑎 (𝐻) 𝛿

ℎ𝑛
(𝜆
𝑖
) , (87)

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
− 𝜆̃

𝑗,ℎ𝑛

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶0𝛿

2
ℎ𝑛

(𝜆
𝑖
) . (88)

Proof. We use induction to proveTheorem 8.
First, for 𝑛 = 1, since𝐶(𝜆

𝑖
) ≤ 𝐶0, we can obtain (86)–(88)

from (84) and Lemma 2.
Suppose that (86)–(88) hold for 𝑛 − 1. Then from

Theorem 5 we know that (86)–(88) are valid for 𝑛.

Corollary 9. Under the conditions of Theorem 8, further
assume that {𝑉

ℎ𝑖
}
𝑛

𝑖=1 is a series of linear or bilinear finite element
spaces, and 𝑀(𝜆) ⊂ 𝐻

1+𝜎
(Ω), 𝑟 ≤ 𝜎 ≤ 1. Then (86)–(88) are

valid and

𝜂
𝑎
(𝐻) ≤ 𝐶𝐻

𝑟/2

,

𝛿
ℎ𝑛
(𝜆
𝑖
) ≤ 𝐶ℎ

𝜎

𝑛
.

(89)

Remark 10. When 𝑞 = 1, we obtain error estimates (86) and
(88) for simple eigenvalues. Comparing (86) and (88) with
the estimates (4.6), (4.7) in [15], we know that our algorithm
achieves the optimal convergence order and is as efficient as
Algorithm 4.1 in [15].

Remark 11. With the iteration times increasing, the approxi-
mate eigenvalues are closer to the exact ones which lead the
equation (32) more closer to singular, although it is not diffi-
cult to solve numerically (see [22]). However, we fix the shift
in Algorithms 4 and 7 and get a new scheme. In Section 5, we
will report a numerical experiment when the shift is fixed as
𝜆̃
𝑗,ℎ𝑘

= 𝜆̃
𝑗,ℎ1

.

Remark 12. Reference [15, 17] analyzed that the computa-
tional costs of their algorithms are almost the same as those
of solving the corresponding boundary value problem. Com-
paring our Algorithm 7 with Algorithm 7.2 in [15], it is not
difficult to see that the computational work of these two
algorithms are almost the same.

5. Numerical Examples

In this section, we consider the Steklov eigenvalue problem
(1) on the unit square Ω = (−0.5, 0.5)2 and the L-shape
domain Ω = (0, 2)2 \ [1, 2]2, respectively. In our numerical
experiments, we use algorithms in [15], our Algorithm 7, and
Algorithm 7 with fixed shift 𝜆̃

𝑗,ℎ𝑘
= 𝜆̃

𝑗,ℎ1
to solve (1), and the

resulting approximations are denoted by 𝜆
𝑋

𝑗,ℎ𝑘+1
, 𝜆𝑆

𝑗,ℎ𝑘+1
, and

𝜆
𝐹

𝑗,ℎ𝑘+1
, respectively. Our programs are performed under the

package of Chen (cf. [25]).

Example 1. We solve (1) on the unit square Ω = (−0.5, 0.5)2
by three algorithms with the linear conforming element.
Since the exact eigenvalues are unknown, we use 𝜆1 ≈

0.24007908542 and 𝜆2 = 𝜆3 ≈ 1.49230313453 obtained by
the spectral elementmethod (see [28]) as the reference eigen-
values. We depict the error curves of three algorithms in
Figure 1.

Example 2. We solve (1) on the L-shape domain Ω =

(0, 2)2 \[1, 2]2 by three algorithmswith the linear conforming
element. Since the exact eigenvalues are unknown, we use
𝜆1 ≈ 0.34141604255 and 𝜆5 ≈ 1.70092884408 obtained by
the spectral elementmethod (see [28]) as the reference values.
The error curves of three algorithms are depicted in Figure 2.

From Figures 1 and 2 we can see that our algorithm
achieves the optimal convergence order and is as efficient as
that in [15].

6. Concluding Remark

In this paper, we combined the correction technique pro-
posed by Lin and Xie and the shifted inverse iteration to
establish a new efficient multilevel correction scheme for
the Steklov eigenvalue problem which is suitable not only
for simple eigenvalues but also for multiple eigenvalues. The
algorithm and analysis in this paper are suitable for the
Steklov eigenvalue problem in three dimensional domains
and also suitable for general second-order self-adjoint elliptic
eigenvalue problems.
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Figure 1:Ω = (−0.5, 0.5)2, error curves for the 1st (a) and 2nd and 3rd (b) eigenvalues.
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Figure 2: Ω = (0, 2)2 \ [1, 2]2, error curves for the 1st (a) and 5th (b) eigenvalues.
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