192 research outputs found

    Relationship between plant diversity and spatial stability of aboveground net primary productivity (ANPP) across different grassland ecosystems

    Get PDF
    Theory predicts that greater biodiversity is expected to enhance stability of ecosystem. In field experiment, we created some diversity-level assemblages by removing functional groups across two grassland ecosystems and evaluated the responses of spatial stability of aboveground net primary productivity (ANPP) to varying functional trait diversity. The results revealed that higher diversity promoted greater spatial stability in the semi-shrub grassland ecosystem except SGB, whereas the similar pattern in diversity-stability relationship had been scarcely found in the typical steppe ecosystem. Additionally, we found that factors-influencing spatial stability varied across different grassland types. In the typical steppe ecosystem, spatial stability was only accounted for by positive sampling effect induced by high dispersal rate of rhizomatous grass. By contrast, in the semi-shrub grassland ecosystem, diversity level together with positive sampling effect commonly contributed to spatial stability, moreover, effect of particular trait overshadowed that of diversity. We also found that the positive diversity-stability relationship did not exist when compared with two grassland types. Research provides new insights into understanding the relationship between biodiversity and ecosystem functioning in varying environments. This relationship is not consistent across different ecosystems and is often system-dependent. Critical trait of species is particularly an important determinant for ecosystem functioning.Key words: Biodiversity experiment, spatial variability, functional trait diversity, ecosystem type

    Therapeutic Potential of Baicalein in Alzheimer's Disease and Parkinson's Disease

    Get PDF
    Alzheimer's disease and Parkinson's disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer's disease and Parkinson's disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of diseasespecific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and antiapoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer's disease and Parkinson's disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer's disease and Parkinson's disease, and discuss the potential mechanisms underlying the effects

    Metasurface Hologram for Multi-Image Hiding and Seeking

    Get PDF

    Gene and Pathway-Based Analysis: Second Wave of Genome-wide Association Studies

    Get PDF
    Despite great success of GWAS in identification of common genetic variants associated with complex diseases, the current GWAS have focused on single SNP analysis. However, single SNP analysis often identifies a number of the most significant SNPs that account for only a small proportion of the genetic variants and offers limited understanding of complex diseases. To overcome these limitations, we propose gene and pathway-based association analysis as a new paradigm for GWAS. As a proof of concept, we performed a comprehensive gene and pathway-based association analysis for thirteen published GWAS. Our results showed that the proposed new paradigm for GWAS not only identified the genes that include significant SNPs found by single SNP analysis, but also detected new genes in which each single SNP conferred small disease risk, but their joint actions were implicated in the development of diseases. The results also demonstrated that the new paradigm for GWAS was able to identify biologically meaningful pathways associated with the diseases which were confirmed by gene-set rich analysis using gene expression data

    LSD: a leaf senescence database

    Get PDF
    By broad literature survey, we have developed a leaf senescence database (LSD, http://www.eplantsenescence.org/) that contains a total of 1145 senescence associated genes (SAGs) from 21 species. These SAGs were retrieved based on genetic, genomic, proteomic, physiological or other experimental evidence, and were classified into different categories according to their functions in leaf senescence or morphological phenotypes when mutated. We made extensive annotations for these SAGs by both manual and computational approaches, and users can either browse or search the database to obtain information including literatures, mutants, phenotypes, expression profiles, miRNA interactions, orthologs in other plants and cross links to other databases. We have also integrated a bioinformatics analysis platform WebLab into LSD, which allows users to perform extensive sequence analysis of their interested SAGs. The SAG sequences in LSD can also be downloaded readily for bulk analysis. We believe that the LSD contains the largest number of SAGs to date and represents the most comprehensive and informative plant senescence-related database, which would facilitate the systems biology research and comparative studies on plant aging

    DNA Methylation of Five Core Circadian Genes Jointly Contributes to Glucose Metabolism: A Gene-Set Analysis in Monozygotic Twins

    Get PDF
    The timing of daily fluctuations in blood glucose is tightly controlled by the circadian rhythm. DNA methylation accompanies the circadian clock, and aberrant DNA methylation has been associated with circadian disruption and hyperglycemia. However, the precise role of circadian genes methylation in glucose metabolism is unknown. Using a gene-set approach in monozygotic (MZ) twin pairs, we examined the joint effect of 77 CpGs in five core circadian genes (CLOCK, BMAL1, PER1, PER2, PER3) on glucose-related traits in 138 middle-aged, male-male MZ twins (69 pairs). DNA methylation was quantified by bisulfite pyrosequencing. We first conducted matched twin pair analysis to examine the association of single CpG methylation with glucose metabolism. We then performed gene-based and gene-set analyses by the truncated product method to examine the combined effect of DNA methylation at multiple CpGs in a gene or all five circadian genes as a pathway on glucose metabolism. Of the 77 assayed CpGs, only one site was individually associated with insulin resistance at FDR < 0.05. However, the joint effect of DNA methylation in all five circadian genes together showed a significant association with glucose metabolism. Our results may unravel a biological mechanism through which circadian rhythm regulates blood glucose, and highlight the importance of testing the joint effect of multiple CpGs in epigenetic analysis

    Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production

    Get PDF
    The rabies Flury Low Egg Passage virus (LEP) has been widely used as a seed virus to generate inactive vaccine. Here, we established a reverse genetic system for LEP and generated a recombinant LEP virus (rLEP-G) that carries two identical G genes. This recombinant virus showed similar properties to those of LEP with respect to in vitro growth, neurotropism index, and virulence in mice. rLEP-G produced 4.3-fold more G protein than did LEP in BHK-21 cells. The inactivated vaccine generated from rLEP-G induced significantly higher virus neutralization titers in mice and dogs than those produced in response to LEP-derived vaccine. Our results suggest that rLEP-G is an improved seed virus candidate for inactivated rabies virus vaccine manufacture
    corecore