121 research outputs found

    Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption

    Get PDF
    Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC\u2711, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts

    Design, Dimensional Synthesis and Evaluation of a Novel 2-DOF Spherical RCM Mechanism for Minimally Invasive Surgery

    Get PDF
    With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two degrees of freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the 2-DOF prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS

    Research Philosophy of Modern Cryptography

    Get PDF
    Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits and ``novelty as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences

    Immune-modulation by polyclonal IgM treatment reduces atherosclerosis in hypercholesterolemic apoEβˆ’/βˆ’ mice

    Get PDF
    AbstractObjectiveGamma-globulin treatment reduces experimental atherosclerosis by modulating immune function; however the effect of IgM on atherosclerosis is not known. We investigated the effect of serum-derived, non-immune polyclonal IgM (Poly-IgM) on atherosclerosis in mice with advanced disease and also assessed its immune-modulatory effects.Methods and resultsAortic atherosclerosis was assessed in apoEβˆ’/βˆ’ mice fed atherogenic diet starting at 6 weeks of age. In addition, mice were also subjected to perivascular cuff injury to the carotid artery at 25 weeks of age to induce accelerated atherosclerosis. At the time of injury, the mice were treated weekly with a commercially available Poly-IgM (0.4mg/mouse) or PBS for 4 weeks and euthanized at 29 weeks of age. Poly-IgM reduced aortic atherosclerosis, and reduced lesion size in the aortic sinus and injured carotid artery, without significant changes in serum cholesterol levels. Poly-IgM treatment was associated with increased anti-oxLDL IgG titers and a reduction in the % splenic CD4+ T cells compared to controls. The splenic CD4+ T cell cultured from the Poly-IgM treated mice had reduced proliferation in vitro compared with controls.ConclusionPoly-IgM treatment reduced aortic and accelerated carotid atherosclerosis in apoEβˆ’/βˆ’ mice in association with increased anti-oxLDL IgG titers, and reduced number and proliferative function of splenic CD4+ T cells. Our study identifies a novel athero-protective and immunomodulatory role for non-immune polyclonal IgM

    Impaired tolerance to the autoantigen LL-37 in acute coronary syndrome

    Get PDF
    BackgroundLL-37 is the only member of the cathelicidin family of antimicrobial peptides in humans and is an autoantigen in several autoimmune diseases and in acute coronary syndrome (ACS). In this report, we profiled the specific T cell response to the autoimmune self-antigen LL-37 and investigated the factors modulating the response in peripheral blood mononuclear cells (PBMCs) of healthy subjects and ACS patients.Methods and resultsThe activation induced marker (AIM) assay demonstrated differential T cell profiles characterized by the persistence of CD134 and CD137, markers that impair tolerance and promote immune effector and memory response, in ACS compared to Controls. Specifically, CD8+CD69+CD137+ T cells were significantly increased by LL-37 stimulation in ACS PBMCs. T effector cell response to LL-37 were either HLA dependent or independent as determined by blocking with monoclonal antibody to either Class-I HLA or Class-II HLA. Blocking of immune checkpoints PD-1 and CTLA-4 demonstrated the control of self-reactive T cell response to LL-37 was modulated predominantly by CTLA-4. Platelets from healthy controls down-modulated CD8+CD69+CD137+ T cell response to LL-37 in autologous PBMCs. CD8+CD69+CD137+ T cell AIM profile negatively correlated with platelet count in ACS patients.ConclusionsOur report demonstrates that the immune response to the autoantigen LL-37 in ACS patients is characterized specifically by CD8+CD69+CD137+ T cell AIM profile with persistent T cell activation and the generation of immunologic memory. The results provide potentially novel insight into mechanistic pathways of antigen-specific immune signaling in ACS

    Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches

    Get PDF
    High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle of Like dissolves like, we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electric properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production

    Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches

    Get PDF
    High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle β€œLike dissolves like,” we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1βˆ’/βˆ’ Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8βˆ’/βˆ’ or CD4βˆ’/βˆ’ mice, respectively, to immune-deficient Rag-1βˆ’/βˆ’ mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1βˆ’/βˆ’ mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1βˆ’/βˆ’ mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4βˆ’/βˆ’ mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    CD8+ T Cells Mediate the Athero-Protective Effect of Immunization with an ApoB-100 Peptide

    Get PDF
    Immunization of hypercholesterolemic mice with selected apoB-100 peptide antigens reduces atherosclerosis but the precise immune mediators of athero-protection remain unclear. In this study we show that immunization of apoE (-/-) mice with p210, a 20 amino acid apoB-100 related peptide, reduced aortic atherosclerosis compared with PBS or adjuvant/carrier controls. Immunization with p210 activated CD8+ T cells, reduced dendritic cells (DC) at the site of immunization and within the plaque with an associated reduction in plaque macrophage immunoreactivity. Adoptive transfer of CD8+ T cells from p210 immunized mice recapitulated the athero-protective effect of p210 immunization in naΓ―ve, non-immunized mice. CD8+ T cells from p210 immunized mice developed a preferentially higher cytolytic response against p210-loaded dendritic cells in vitro. Although p210 immunization profoundly modulated DCs and cellular immune responses, it did not alter the efficacy of subsequent T cell dependent or independent immune response to other irrelevant antigens. Our data define, for the first time, a role for CD8+ T cells in mediating the athero-protective effects of apoB-100 related peptide immunization in apoE (-/-) mice
    • …
    corecore