40 research outputs found
The research on intelligent extraction of furnace mouth flame characteristics based on DNN
Deep neural networks are a focus of artificial intelligence and big data analysis in recent years. The monitor of the converter mouth is essential to the quality of the steel material production while the requirement of the steel material production is increasingly higher in China. The end-point control of converter blowing is the ultimate regulation of the carbon content and temperature. The severity of carbon-oxygen reaction and the temperature of molten steel can be reflected by the converter mouth flame. Operators judge the end of the steel by watching the converter mouth flame, the converter mouth spark and the time of oxygen supply. So, it is very important to offer a quantitative analysis to converter mouth flame characteristics. We quote the deep neural network into the intelligent extraction of the flame characteristics of the furnace mouth and construct a flame color recognition algorithm based on the deepness letter neural network. This paper belongs to the data science problem in the intelligent research of steel production. By observing the converter flame during the steel flame changes, this paper records the data of light intensity and end-point carbon content of each steel making furnace. When this paper then uses the temperature of flame emission spectrum to deduce and the absorption of the molten steel to judge the contents of the carbon during the converter steel blew process, it is more feasible and accurate than watching by operators. At the same time, by using deep learning algorithm, this paper makes the control process get automatic learning ability and achieve intelligent production so that we can provide a basis for solving the problem of predicting the end-point carbon content in molten steel during the blowing process
CAMKs support development of acute myeloid leukemia.
BACKGROUND: We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. RESULTS: Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. CONCLUSION: CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia
Evaluation of Genetic Variation among Sorghum Varieties from Southwest China via Genome Resequencing
Little is known regarding genomic variation among glutinous sorghum [ (L.) Moench] varieties grown in southwest China, which are primarily used to brew the popular Jiang-flavor liquor. This study evaluated genomic variation among six representative sorghum accessions via whole-genome resequencing. The evaluation revealed 2365,363 single-nucleotide polymorphisms (SNPs), 394,365 insertions and deletions, and 47,567 copy number variations among the six genomes. Chromosomes 5 and 10 showed relatively high SNP densities, whereas whole-genome diversity in this population was low. In addition, some chromosomal loci exhibited obvious selection during the breeding process. Sorghum accessions from southwest China formed an elite germplasm population compared with the findings of other geographic populations, and the elite variety ‘Hongyingzi’ contained 79 unique genes primarily involved in basic metabolism. The six sorghum lines contained a large number of high-confidence genes, with Hongyingzi in particular possessing 104 unique genes. These findings advance our understanding of domestication of the sorghum genome, and Chinese sorghum accessions will be valuable resources for further research and breeding improvements
FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma
Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumor types worldwide. BET inhibitors display anti-tumor activity in pancreatic cancer, however the cells often develop resistance after a long-term treatment and the underlying molecular basis is not fully understood. Methods Drug screening assay in Fructose-1, 6-biphosphatase (FBP1) knockdown or overexpressing pancreatic cancer cells was performed. Tumor cell motility, FBP1 protein and mRNA changes were investigated after BET inhibitors treatment. The interaction between TRIM28 and FBP1 after BET inhibitors treatment was examined by Co-immunoprecipitation (IP) and GST pull-down. The relationship between FBP1 and c-Myc was examined by western blot, RT-qPCR and immunohistochemistry (IHC). Results The expression of FBP1 protein increased the sensitivity of pancreatic cancer cells to JQ1. Furthermore, we showed that JQ1 stabilized FBP1 protein level by disrupting the interaction between FBP1 and TRIM28 in pancreatic cancer cells. Moreover, we demonstrated that FBP1 promoted c-Myc degradation through disrupting the ERK-c-Myc axis. Conclusions FBP1 modulates the sensitivity of pancreatic cancer cells to BET inhibitors by decreasing the expression of c-Myc. These findings highlight FBP1 could be used as a therapeutic niche for patient-tailored therapies
Low platelet count as risk factor for infections in patients with primary immune thrombocytopenia: a retrospective evaluation
Infectious complications are common and sometimes life threatening in patients with immune thrombocytopenia (ITP), mainly due to the immune-suppressive therapy. Recent evidence suggests a potential role of platelets in the inflammation process. In this clinical study, we further investigated the role of thrombocytopenia on infections in patients with primary ITP. We retrospectively evaluated data from the recently published large randomized clinical trial of a cohort of 195 patients with primary ITP, who were randomized for prednisone or high-dose dexamethasone. From 158 patients (81%), data on platelet count and infections within the first month of treatment were collected. In this period, 24% of the ITP patients had an infection. Patients with infection had significant lower platelet counts during the first month of treatment leading to a significant lower therapy response at 1 month and a significant longer hospital stay (14.0 versus 9.8 days). Additionally, Cox regression analysis showed that an increase in platelet count of 20 × 109/L led to a reduction of 52% in infections in the next week, showing low platelet count is a significant risk factor for infection. Platelet transfusion led to an increase in platelet count in ITP patients without infection, but not in patients with infection. In conclusion, infections are common in patients with primary ITP leading to significant worse response rates and a longer hospital stay. Interestingly, low platelet count was independently correlated with an increased risk of infection
Electron Heat Flux Instabilities in the Inner Heliosphere: Radial Distribution and Implication on the Evolution of the Electron Velocity Distribution Function
This Letter investigates the electron heat flux instability using the radial models of the magnetic field and plasma parameters in the inner heliosphere. Our results show that both the electron acoustic wave and the oblique whistler wave are unstable in the regime with large relative drift speed (ΔVe) between electron beam and core populations. Landau-resonant interactions of electron acoustic waves increase the electron parallel temperature that would lead to suppressing the electron acoustic instability and amplifying the growth of oblique whistler waves. Therefore, we propose that the electron heat flux can effectively drive oblique whistler waves in an anisotropic electron velocity distribution function. This study also finds that lower-hybrid waves and oblique Alfvén waves can be triggered in the solar atmosphere, and that the former instability is much stronger than the latter. Moreover, we clarify that the excitation of lower-hybrid waves mainly results from the transit-time interaction of beaming electrons with resonant velocities vP ∼ ω/kP, where ω and kP are the wave frequency and parallel wavenumber, respectively. In addition, this study shows that the instability of quasi-parallel whistler waves can dominate the regime with medium ΔVe at the heliocentric distance nearly larger than 10 times of the solar radius