99 research outputs found

    Is a highly pathogenic avian influenza virus H5N1 fragment recombined in PB1 the key for the epidemic of the novel AIV H7N9 in China, 2013?

    Get PDF
    SummaryBackgroundA novel avian influenza A H7N9 virus that infects humans was identified in China in 2013. This study is the first to comprehensively investigate the characteristics of genomic recombination, rather than reassortment, which has been the subject of investigation in previously reported studies.MethodsNovel avian influenza virus (AIV) H7N9 genome sequences were obtained from the NCBI Influenza Virus Sequence Database and the Global Initiative on Sharing Avian Influenza Database (GISAID) and a representative isolate was subjected to homogeneity analysis. A phylogenetic tree was constructed. Eight segments of the isolate were analyzed to identify segments with recombination events, the corresponding recombination fragments, and breakpoints. The evolutionary history of the recombined fragments was tracked by constructing phylogenetic trees of the recombination fragments.ResultsAmong the eight segments of the novel AIV H7N9 analyzed, only the PB1 segment showed a marked recombination phenomenon, with 11 recombination events; these included five actual recombination events and six possible misalignment artifact recombination events. The most notable was the recombination of a 291-nucleotide (nt) fragment at the 490–780 nt site that was affiliated to a highly pathogenic avian influenza virus (HPAIV) H5N1 (A/tree sparrow/Thailand/VSMU-16-RBR/2005). The phylogenetic tree of the 291-nt recombination fragment on the PB1 segment showed that the novel AIV H7N9 had a close genetic relationship to H9N2 and H5N1.ConclusionsThe novel AIV H7N9 might have reassorted its PB1 segment from H9N2 circulating in China, and this H9N2 PB1 might have been recombined into a highly pathogenic fragment from HPAIV H5N1, which could be the reason for the high fatality rate among patients with AIV H7N9 influenza

    Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach

    Get PDF
    Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the “average” spatial pattern of disease risk, thereby masking time trajectories of disease risk. In this study we propose a new idea titled “spatio-temporal kernel density estimation (stKDE)” that employs hybrid kernel (i.e., weight) functions to evaluate the spatio-temporal disease risks. This approach not only can make full use of sample data but also “borrows” information in a particular manner from neighboring points both in space and time via appropriate choice of kernel functions. Monte Carlo simulations show that the proposed method performs substantially better than the traditional (i.e., frequency-based) kernel density estimation (trKDE) which has been used in applied settings while two illustrative examples demonstrate that the proposed approach can yield superior results compared to the popular trKDE approach. In addition, there exist various possibilities for improving and extending this method

    The epidemiology of hospitalized influenza in children, a two year population-based study in the People's Republic of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology and disease burden of annual influenza in children in mainland People's Republic of China have not been reported in detail. To understand the incidence and epidemiology of laboratory-proven influenza hospitalization in children in China, a review of available laboratory and hospital admission data was undertaken.</p> <p>Methods</p> <p>We conducted a retrospective population-based study in Suzhou and the surrounding area of Jiangsu province, China for hospitalized cases of respiratory illness at Suzhou Children's Hospital. Cases of pneumonia or respiratory illness were identified from hospital computer data bases. Routine virological testing by fluorescent monoclonal antibody assay of all hospitalized children identified influenza and other viruses. We calculated incidence rates using census population denominators.</p> <p>Results</p> <p>Of 7,789 specimens obtained during 2007 and 2008, 85 were positive for influenza A and 25 for influenza B. There were 282 specimens with parainfluenza virus and 1392 with RSV. Influenza occurred throughout the year, with peaks in the winter, and in August/September. Overall estimated annual incidence of laboratory-proven influenza hospitalization was 23-27/100,000 children 0-4 years old, and 60/100,000 in infants 0-6 months, with an average hospitalization of 9 days.</p> <p>Conclusions</p> <p>Influenza disease in young children in this part of China is a relatively common cause of hospitalization, and occurs throughout the year. The use of influenza vaccine in Chinese children has the potential to reduce the effect of influenza in the children, as well as in their communities. Studies are needed to further assess the burden of influenza, and to develop and refine effective strategies of immunization of young children in China.</p

    Urban-Rural Disparity in Cancer Incidence, Mortality, and Survivals in Shanghai, China, During 2002 and 2015

    Get PDF
    Introduction: Disparities in the incidence, mortality, and survival of cancer types between urban and rural areas in China reflect the effects of different risk factor exposure, education, and different medical availability. We aimed to characterize the disparities in the incidence, mortality, and survivals of cancer types between urban and rural areas in Shanghai, China, 2002-2015.Materials and Methods: The incidence and mortality were standardized by Segi's world standard population. Trends in the incidence and mortality of cancers were compared using annual percent change. The 5-year observed and relative survivals were calculated with life table and Ederer II methods.Results: Age-standardized incidences and mortalities were 212.55/105 and 109.45/105 in urban areas and 210.14/105 and 103.99/105 in rural areas, respectively. Female breast cancer and colorectal cancer occurred more frequently in urban than in rural areas, quite in contrast to liver cancer and cervical cancer. Cancers of lung and bronchus, liver, stomach, and colon and rectum were the leading causes of cancer death in both areas. Age-standardized incidence of female breast cancer and colorectal cancer in urban areas increased while gastric cancer and liver cancer decreased in both areas. Age-standardized mortalities of cancers of breast, esophagus, stomach, colon and rectum, liver, and lung and bronchus decreased in both areas. For all cancers combined, the 5-year observed and relative survivals of cancer patients were higher in urban than in rural areas. The 5-year observed and relative survivals of cancers of liver, pancreas, stomach, brain and central nervous system (CNS), and prostate were higher in urban than in rural areas. The 5-year observed and relative survivals of cervical cancer were higher in rural than in urban areas.Conclusions: Factors promoting female breast cancer and colorectal cancer in urban areas and liver cancer and cervical cancer in rural areas should be specifically intervened in cancer prophylaxis. Improved medical services can greatly prolong the survival of major cancers in rural areas

    Achievements of schistosomiasis control in China

    No full text
    The control of schistosomiasis has been spectacularly successful in terms of controlling endemicity and severity of the disease during the last 50 years. It can be categorized into two stages. From 1955 through 1980, the transmission-control strategy had been widely and successfully carried out. By the end of 1980, the epidemic of schistosomiasis was successfully circumscribed in certain core regions including areas at the middle and low reaches of the Yangtze River and some mountainous areas in Sichuan and Yunnan provinces, where control of schistosomiasis had been demonstrated to be very difficult to be sustained. Therefore, since 1980, schistosomiasis control in China has been modified to employ a stepwise strategy, based on which morbidity control has been given priorities and if possible transmission control has been pursued. However, since snail-ridden areas remain unchanged so far, reinfections occur frequently. This necessitates a maintenance phase to consolidate the achievements in the control of schistosomiasis. In the mean time, we are challenged with some environmental, social and economical changes in terms of controlling schistosomiasis. Successfully controlling schistosomiasis in China is still a long-term task but will be achieved without doubt along with the economic development and the promotion of living and cultural standard of people

    How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS)

    No full text
    Abstract Background China Centre for Diseases Control and Prevention (CDC) developed the China Infectious Disease Automated Alert and Response System (CIDARS) in 2005. The CIDARS was used to strengthen infectious disease surveillance and aid in the early warning of outbreak. The CIDARS has been integrated into the routine outbreak monitoring efforts of the CDC at all levels in China. Early warning threshold is crucial for outbreak detection in the CIDARS, but CDCs at all level are currently using thresholds recommended by the China CDC, and these recommended thresholds have recognized limitations. Our study therefore seeks to explore an operational method to select the proper early warning threshold according to the epidemic features of local infectious diseases. Methods The data used in this study were extracted from the web-based Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS), and data for infectious disease cases were organized by calendar week (1–52) and year (2009–2015) in Excel format; Px was calculated using a percentile-based moving window (moving window [5 week*5 year], x), where x represents one of 12 centiles (0.40, 0.45, 0.50….0.95). Outbreak signals for the 12 Px were calculated using the moving percentile method (MPM) based on data from the CIDARS. When the outbreak signals generated by the ‘mean + 2SD’ gold standard were in line with a Px generated outbreak signal for each week during the year of 2014, this Px was then defined as the proper threshold for the infectious disease. Finally, the performance of new selected thresholds for each infectious disease was evaluated by simulated outbreak signals based on 2015 data. Results Six infectious diseases were selected in this study (chickenpox, mumps, hand foot and mouth diseases (HFMD), scarlet fever, influenza and rubella). Proper thresholds for chickenpox (P75), mumps (P80), influenza (P75), rubella (P45), HFMD (P75), and scarlet fever (P80) were identified. The selected proper thresholds for these 6 infectious diseases could detect almost all simulated outbreaks within a shorter time period compared to thresholds recommended by the China CDC. Conclusions It is beneficial to select the proper early warning threshold to detect infectious disease aberrations based on characteristics and epidemic features of local diseases in the CIDARS
    corecore