7 research outputs found
Battery storage configuration for multi-energy microgrid considering primary frequency regulation and demand response
In this paper, we study the optimal configuration problem of battery energy storage (BES) for multi-energy microgrid (MEMG) in two typical modes, which considers demand response in grid-connected mode and primary frequency regulation in islanding mode. In order to maximize the function of BES in the two modes, we first present the optimization model of MEMG with demand response in grid-connected mode to make profit. Then, considering the reliability and the power quality issues of MEMG, the BES should be used to participate primary frequency regulation to maintain the stability of the system frequency. Therefore, the constraint of primary frequency regulation in islanding mode is added to the optimization model. Computation results demonstrate that the proposed optimization strategy for BES capacity configuration can effectively reduce the operation cost and enhance the primary frequency regulation capability of the MEMG
Altered Spontaneous Regional Brain Activity in the Insula and Visual Areas of Professional Traditional Chinese Pingju Opera Actors
Recent resting-state fMRI studies have revealed neuroplastic alterations after long-term training. However, the neuroplastic changes that occur in professional traditional Chinese Pingju opera actors remain unclear. Twenty professional traditional Chinese Pingju opera actors and 20 age-, sex-, and handedness-matched laymen were recruited. Resting-state fMRI was obtained by using an echo-planar imaging sequence, and two metrics, amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), were utilized to assess spontaneous neural activity during resting state. Our results demonstrated that compared with laymen, professional traditional Chinese Pingju actors exhibited significantly decreased ALFF in the bilateral calcarine gyrus and cuneus; decreased ReHo in the bilateral superior occipital and calcarine gyri, cuneus, and right middle occipital gyrus; and increased ReHo in the left anterior insula. In addition, no significant association was found between spontaneous neural activity and Pingju opera training duration. Overall, the changes observed in spontaneous brain activity in professional traditional Chinese Pingju opera actors may indicate their superior performance of multidimensional professional skills, such as music and face perception, dancing, and emotional representation
Low-dose pleiotropic radiosensitive nanoformulations for three-pronged radiochemotherapy of hypoxic brain glioblastoma under BOLD/DWI monitoring
Abstract Background Hypoxia-mediated radioresistance is the main obstacle to the successful treatment of glioblastoma (GBM). Enhancing hypoxic radiosensitivity and alleviating tumor hypoxia are both effective means to improve therapeutic efficacy, and the combination of the two is highly desirable and meaningful. Results Herein, we construct a low-dose pleiotropic radiosensitive nanoformulation consisting of a high-Z atomic nanocrystal core and mesoporous silica shell, surface-modified with angiopep-2 (ANG) peptide and loaded with nitric oxide (NO) donor and hypoxia-activated prodrug (AQ4N). Benefiting from ANG-mediated transcytosis, this nanoformulation can efficiently cross the BBB and accumulate preferentially in the brain. Low-dose radiation triggers this nanoformulation to exert a three-pronged synergistic therapeutic effect through high-Z-atom-dependent dose deposition enhancement, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-selective killing, thereby significantly inhibiting GBM in situ growth while prolonging survival and maintaining stable body weight in the glioma-bearing mice. Meanwhile, the proposed in vivo 9.4 T BOLD/DWI can realize real-time dynamic assessment of local oxygen supply and radiosensitivity to monitor the therapeutic response of GBM. Conclusions This work provides a promising alternative for hypoxia-specific GBM-targeted comprehensive therapy, noninvasive monitoring, and precise prognosis. Graphical Abstrac
Cross-ancestry genome-wide association studies of brain imaging phenotypes
Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 x 10(-11) for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations