24 research outputs found

    Usefulness of soluble endothelial protein C receptor combined with left ventricular global longitudinal strain for predicting slow coronary flow: A case-control study

    Get PDF
    Background: Slow coronary flow (SCF) is an angiographic entity characterized by delayed coronary opacification without an evident obstructive lesion in the epicardial coronary artery. However, patients with SCF have decreased left ventricular (LV) global longitudinal strain (GLS). SCF is associated with inflammation, and soluble endothelial protein C receptor (sEPCR) is a potential biomarker of inflammation. Therefore, under evaluation herein, was the relationship between SCF and sEPCR and the predictive value of sEPCR and LV GLS for SCF was investigated. Methods: Twenty-eight patients with SCF and 34 controls were enrolled. SCF was diagnosed by the thrombolysis in myocardial infarction frame count (TFC). The plasma level of sEPCR was quantified using enzyme-linked immunosorbent assay. LV GLS was measured by two-dimensional speckle-tracking echocardiography. Results: Plasma sEPCR was significantly higher in patients with SCF than in controls and was positively correlated with the mean TFC (r = 0.67, p < 0.001) and number of involved vessels (r = 0.61, p < 0.001). LV GLS was decreased in patients with SCF compared to that in controls. sEPCR level (OR = 3.14, 95% CI 1.55–6.36, p = 0.001) and LV GLS (OR = 1.44, 95% CI 1.02–2.04, p = 0.04) were independent predictors of SCF. sEPCR predicted SCF (area under curve [AUC]: 0.83); however, sEPCR > 9.63 ng/mL combined with LV GLS > −14.36% demonstrated better predictive power (AUC: 0.89; sensitivity: 75%; specificity: 91%). Conclusions: Patients with SCF have increased plasma sEPCR and decreased LV GLS. sEPCR may be a useful potential biomarker for SCF, and sEPCR combined with LV GLS can better predict SCF

    3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Get PDF
    Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices

    Quality-Assured and Sociality-Enriched Multimedia Mobile Mashup

    No full text
    <p/> <p>Mashups are getting more complex with the addition of rich-media and real-time services. The new research challenges will be how to guarantee the quality of the aggregated services, and how to share them in a collaborative manner. This paper presents a metadata-based mashup framework in Next Generation Wireless Network (NGWN), which guarantees the quality and supports social interactions. In contrast to existing quality-assured approaches, the proposed mashup model addresses the quality management issue from a new perspective through defining the Quality of Service (QoS) metadata into two levels: fidelity (user perspective) and modality (application perspective). The quality is assured from quality-aware service selection and quality-adaptable service delivery. Furthermore, the mashup model is extended for users to annotate services collaboratively. The annotation occurs in two ways, social tagging (e.g., rating and comments) and QoS attributes (e.g., device type and access network, etc.). In order to apply this network-independent metadata model into NGWN architecture, we further introduce a new entity named Multimedia Mashup Engine (MME) which enables seamlessly access to the services and Adaptation Decision Taking (ADT). Finally, our prototype system and the simulation results demonstrate the performance of the proposed work.</p

    Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study

    No full text
    Direct Z-scheme photocatalysts have attracted extensive attention due to their strong redox ability and efficient separation of photogenerated electron-hole pairs. In this study, we constructed two types of ZnS/SnS2 heterojunctions with different stacking models of ZnS and SnS2 layers, and investigated their structures, stabilities, and electronic and optical properties. Both types of heterojunctions are stable and are direct Z-scheme photocatalysts with band gaps of 1.87 eV and 1.79 eV, respectively. Furthermore, their oxidation and reduction potentials straddle the redox potentials of water, which makes them suitable as photocatalysts for water splitting. The built-in electric field at the heterojunction interface improves the separation of photogenerated electron-hole pairs, thus enhancing their photocatalytic efficiency. In addition, ZnS/SnS2 heterojunctions have higher carrier mobilities and light absorption intensities than ZnS and SnS2 monolayers. Therefore, the ZnS/SnS2 heterojunction has a broad application prospect as a direct Z-scheme visible-light-driven photocatalyst for overall water splitting

    Neonatal repetitive pain in rats leads to impaired spatial learning and dysregulated hypothalamic-pituitary-adrenal axis function in later life

    No full text
    Preterm birth is a major health issue. As part of their life-saving care, most preterm infants require hospitalization and are inevitably exposed to repetitive skin-breaking procedures. The long-term effects of neonatal repetitive pain on cognitive and emotional behaviors involving hypothalamic-pituitary-adrenal (HPA) axis function in young and adult rats are unknown. From P8 to P85, mechanical hypersensitivity of the bilateral hindpaws was observed in the Needle group (P &lt; 0.001). Compared with the Tactile group, the Needle group took longer to find the platform on P30 than on P29 (P = 0.03), with a decreased number of original platform site crossings during the probe trial of the Morris water maze test (P = 0.026). Moreover, the Needle group spent more time and took longer distances in the central area than the Tactile group in the Open-field test, both in prepubertal and adult rats (P &lt; 0.05). The HPA axis function in the Needle group differed from the Tactile group (P &lt; 0.05), with decreased stress responsiveness in prepuberty and puberty (P &lt; 0.05) and increased stress responsiveness in adulthood (P &lt; 0.05). This study indicates that repetitive pain that occurs during a critical period may cause severe consequences, with behavioral and neuroendocrine disturbances developing through prepuberty to adult life

    Incremental values of AOPP, IL-6, and GDF15 for identifying arteriosclerosis in patients with obstructive sleep apnea

    No full text
    Abstract Background The objective of this study was to determine the independent and incremental values of advanced oxidative protein product (AOPP), interleukin 6 (IL-6), and growth differentiation factor 15 (GDF15) in identifying arteriosclerosis in patients with obstructive sleep apnea (OSA). Methods A total of 104 individuals diagnosed with OSA by polysomnography were recruited in our study. Arteriosclerosis was defined by measuring the ultrafast pulse wave velocity of the carotid artery. Peripheral venous blood samples were collected to analyze the levels of AOPP, IL-6, and GDF15 utilizing commercially available enzyme-linked immunosorbent assays. Results Compared to OSA patients without arteriosclerosis, those with arteriosclerosis exhibited significantly higher levels of AOPP, IL-6, and GDF15. GDF15 remained significantly associated with arteriosclerosis even after accounting for clinical factors such as age, gender, body mass index, systolic blood pressure, fasting blood glucose, smoking, and the apnea–hypoxia index (AHI). GDF15 demonstrated the largest area under the curve (AUC) for identifying arteriosclerosis in OSA patients (AUC, 0.85 [0.77–0.94]). The logistic regression model, combining clinical factors and AHI, was enhanced by the inclusion of AOPP and IL-6 (Chi-square = 25.06), and even further improved when GDF15 was added (Chi-square = 50.74). The integrated discrimination index increased by 0.06 to 0.16 when GDF15 was added to the models including clinical factors, AOPP, and IL-6. Conclusions This study verified the independent and incremental value of GDF15 in identifying arteriosclerosis in OSA patients, surpassing clinical risk factors and other serum biomarkers such as AOPP and IL-6

    Craniofacial Reconstruction Evaluation by Geodesic Network

    Get PDF
    International audienceCraniofacial reconstruction is to estimate an individual’s face model from its skull. It has a widespread application in forensicmedicine, archeology, medical cosmetic surgery, and so forth. However, little attention is paid to the evaluation of craniofacialreconstruction. This paper proposes an objective method to evaluate globally and locally the reconstructed craniofacial facesbased on the geodesic network. Firstly, the geodesic networks of the reconstructed craniofacial face and the original face are built,respectively, by geodesics and isogeodesics, whose intersections are network vertices. Then, the absolute value of the correlationcoefficient of the features of all corresponding geodesic network vertices between two models is taken as the holistic similarity,where the weighted average of the shape index values in a neighborhood is defined as the feature of each network vertex.Moreover,the geodesic network vertices of each model are divided into six subareas, that is, forehead, eyes, nose, mouth, cheeks, and chin,and the local similarity is measured for each subarea. Experiments using 100 pairs of reconstructed craniofacial faces and theircorresponding original faces show that the evaluation by our method is roughly consistent with the subjective evaluation derivedfrom thirty-five persons in five groups

    Soluble Vascular Cell Adhesion Molecule-1 as an Inflammation-Related Biomarker of Coronary Slow Flow

    No full text
    Background: Coronary slow flow (CSF) is an angiographic entity characterized by delayed coronary opacification with no evident obstructive lesion in the epicardial coronary artery. Several studies have shown that the occurrence and development of CSF may be closely related to inflammation. Soluble vascular cell adhesion molecule-1 (sVCAM-1) is a biomarker related to inflammation. The aim of this study was to evaluate the correlation between plasma soluble VCAM-1 level and CSF occurrence and thus the predictive value of VCAM-1 for CSF. Methods: Forty-six CSF patients and thirty control subjects were enrolled. Corrected thrombolysis in myocardial infarction frame count (cTFC) was used to diagnose CSF. Functional status and quality of life were determined by the Seattle Angina Questionnaire (SAQ). Echocardiography was used to evaluate the systolic and diastolic function of the left ventricle (LV) and right ventricle (RV). The plasma levels of sVCAM-1, IL-6, and TNF-α were quantified by enzyme-linked immunosorbent assay. Results: Compared with the control group, the physical limitation score by the SAQ, the LV global longitudinal strain (GLS), mitral E, and mitral E/A decreased in patients with CSF, while the plasma IL-6 and TNF-α levels increased. The plasma sVCAM-1 level in the CSF group was significantly higher than that in the control group (186.03 ± 83.21 vs. 82.43 ± 42.12 ng/mL, p p p = 0.004). Logistic regression analyses confirmed that plasma sVCAM-1 level (OR = 1.07, 95%CI: 1.03–1.11) is an independent predictor of CSF, and the receiver operating characteristic curve analysis showed that plasma sVCAM-1 levels had statistical significance in predicting CSF (area under curve = 0.88, p < 0.001). When the sVCAM-1 level was higher than 111.57 ng/mL, the sensitivity for predicting CSF was 87% and the specificity was 73%. Conclusions: Plasma sVCAM-1 level can be used to predict CSF and was associated with the clinical symptoms of patients. It may serve as a potential biomarker for CSF in the future
    corecore