22 research outputs found

    Research on Decoupling of Parallel Six-Axis Force/Torque Sensor Based on an Independent Component Analysis

    No full text
    This study proposes a parallel six-axis force/torque sensor decoupling method based on an independent component analysis (ICA), and the experimental platform is built for experimental exploration. First of all, the structural model and mathematical model of the parallel six-axis force/torque sensor are introduced, which is composed of single-dimensional force sensors with central symmetry. Secondly, the test prototype was developed and a test platform was built to perform online static loading test on the sensor, and the test results were analyzed. Finally, the ICA-based dynamic decoupling study of the sensor is carried out, the effectiveness and rationality of the proposed algorithm are proved. The research results of this paper have certain reference values for the further study of the decoupling of parallel six-axis force/torque sensors

    Research on Robot Surface Tracking Motion Based on Force Control of Six-Axis Wrist Force Sensor

    No full text
    In order to reduce the environmental contact force and make the operation task completed successfully, the robot is frequently required with force perception and active compliance control. Based on the six-axis wrist force sensor measuring, a robot model of surface tracking motion is proposed, and its force control algorithm and experiment are studied. The measurement principle of the six-axis wrist force sensor and the inadequacy of the sensor measuring the six-dimensional force online are introduced firstly. The surface tracking motion model and its coordinate system are established. On this basis, the relationship between the pose adjustment of surface tracking motion and the measuring results of the six-axis wrist force sensor is deduced. At last, the experimental study of the surface tracking robot system that applied the force control algorithm is conducted. The experiment shows that the robot can adjust the current position and orientation in real time according to the six-axis wrist force sensor measuring, which demonstrates the feasibility of the surface tracking motion model and the correctness of the force control algorithm

    Research on Collision Point Identification Based on Six-Axis Force/Torque Sensor

    No full text
    The collision detection algorithm of the robot body previously needed to rely on the surface geometry information of the colliding object and no deformation was allowed during the collision process. To solve this problem, a new robot body collision detection algorithm that uses the force information of the six-axis force/torque sensor at the base to self-constrain is proposed which does not rely on the geometric information of the colliding object surface, and the deformation also allows deformation during the collision. In terms of sensor data preprocessing, a gravity and dynamic force compensation algorithm for the six-axis force/torque sensor at the base is proposed to ensure that the reading of the six-axis force/torque sensor at the base always maintains the value of 0 when the robot is working. Then, the robot is considered to have collided with the outside world when the sensor reading exceeds the set threshold. And a precision factor is proposed to analyze the influence of force and collision distance on the accuracy of the algorithm. Finally, the new algorithm proposed in this paper is compared with the traditional algorithm that relies on the geometric information of the colliding body surface. The experimental results indicate that the accuracy of the collision point detection algorithm proposed in this paper is close to that of the traditional method, but it does not need to rely on the geometric information of the collision body surface, and there is no requirement for whether there is deformation during the contact process. It can be concluded that the collision distance is the most important factor affecting the accuracy of the algorithm, followed by the conclusion of the magnitude of the collision force through the calculation of the precision factor. The results show that this method can effectively detect the collision point of the machine body, and the maximum error at the farthest point of the robot is 8.712%, which lays a certain foundation for the subsequent research on human-machine collaboration in small collaborative robots

    Design and Dynamic Analysis of a Novel Biomimetic Robotics Hip Joint

    Get PDF
    In order to increase the workspace and the carrying capacity of biomimetic robotics hip joint, a novel biomimetic robotics hip joint was developed. The biomimetic robotics hip joint is mainly composed of a moving platform, frame, and 3-RRR orthogonal spherical parallel mechanism branched chains, and has the characteristics of compact structure, large bearing capacity, high positioning accuracy, and good controllability. The functions of the biomimetic robotics hip joint are introduced, such as the technical parameters, the structure and the driving mode. The biomimetic robotics hip joint model of the robot is established, the kinematics equation is described, and then the dynamics are analyzed and simulated with ADAMS software. The proposed analysis methodology can be provided a theoretical base for biomimetic robotics hip joint of the servo motor selection and structural design. The designed hip joint can be applied in serial and parallel robots or any other mechanisms

    Study of Dynamic Viscoelasticity of a Mineral Oil-Based Magnetic Fluid

    No full text
    Magnetic fluid is a field-responsive intelligent fluid, which has the flow characteristics of liquid and the elastic properties of solid. Because of its unique properties, it has a strong application prospect in the fields of magnetic soft robot, intelligent sensor, and so on. Dynamic viscoelasticity is a significant index to investigate the performance of magnetic fluid in the application process. In this paper, the dynamic viscoelasticity of a homemade mineral oil-based magnetic fluid was investigated under oscillatory shear experimental conditions using an MCR302 rheometer, and the effects of different temperatures and magnetic fields on the dynamic viscoelasticity were examined. Amplitude sweeps tests showed that the value of the storage modulus remained constant within the linear viscoelastic region (LVE) and the stable structure was not destroyed. As the magnetic field strength increased or the temperature increased, the range of the linear viscoelastic zone decreased. At large amplitude, the loss modulus will first appear as a peak and then decrease. The frequency sweep experiment showed that the storage modulus and loss modulus increased with the increase in angular frequency, and the greater the magnetic field intensity, the longer the internal structure relaxation time. When the magnetic field was constant, the higher the temperature, the smaller the storage modulus and loss modulus of the magnetic fluid. At high temperature, the loss coefficient of mesmeric fluid was large, and the magnetic fluid was more viscous. The lower the temperature is, the smaller the loss coefficient of the magnetic fluid is, and the magnetic fluid is more pliant. The study of dynamic viscoelasticity of magnetic fluids lays the foundation for establishing the complete structure intrinsic relationship of magnetic fluids and provides guidance for the application of magnetic fluids in magnetic 3D printing, droplet robot, and smart wear

    A Series of Cinchona-Derived <i>N</i>‑Oxide Phase-Transfer Catalysts: Application to the Photo-Organocatalytic Enantioselective α‑Hydroxylation of β‑Dicarbonyl Compounds

    No full text
    A series of cinchona-derived <i>N</i>-oxide asymmetric phase-transfer catalysts were synthesized and applied in the enantioselective photo-organocatalytic α-hydroxylation of β-keto esters and β-keto amides (23 examples) using molecular oxygen in excellent yields (up to 98%) and high enantioselectivities (up to 83% ee). These new catalysts could be recycled and reused six times for such a reaction with almost the original reactivity and enantioselectivity
    corecore