117 research outputs found

    Short term power load forecasting based on BES-VMD and CNN-Bi-LSTM method with error correction

    Get PDF
    Aiming at the strong non-linear and non-stationary characteristics of power load, a short-term power load forecasting method based on bald eagle search (BES) optimization variational mode decomposition (VMD), convolutional bi-directional long short-term memory (CNN-Bi-LSTM) network and considering error correction is studied to improve the accuracy of load forecasting. Firstly, a decomposition loss evaluation criterion is established, and the VMD optimal decomposition parameters under the evaluation criterion are determined based on BES to improve the decomposition quality of the signal. Then, the original load sequence is decomposed into different modal components, and the corresponding CNN-Bi-LSTM network prediction models are established for each modal component. In addition, considering the influence of various modal components, holiday and meteorological factors on the error, an error correction model considering short-term factors is established to mine the hidden information contained in the error to reduce the inherent error of the model. Finally, the proposed method is applied to a public dataset provided by a public utility in the United States. The results show that this method can better track the changes of load and effectively improve the accuracy of short-term power load forecasting

    Bacillus amyloliquefaciens Ameliorates Dextran Sulfate Sodium-Induced Colitis by Improving Gut Microbial Dysbiosis in Mice Model

    Get PDF
    Several Bacillus strains exert beneficial effects on the maintenance of intestinal homeostasis and host health. However, whether Bacillus amyloliquefaciens (BA) can improve gut microbial dysbiosis and ameliorate colitis is unknown. Therefore, we conducted the present study to investigate the effects of BA administration on intestinal morphology, inflammatory response, and colonic microbial composition in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results showed that BA administration significantly ameliorated body weight loss, decreased disease activity index, and improved colonic tissue morphology in DSS-treated mice. In addition, levels of immunoglobulins, as well as pro-inflammatory cytokines, were decreased after BA administration. Importantly, colonic microbiota profiling indicated a significant (p < 0.05) difference in beta-diversity between BA-administrated and DSS-treated mice, according to weighted principal coordinate analysis (PCoA) results. The relative abundance of the Firmicutes genus was increased, whereas that of Bacteroidetes was decreased by BA administration. Furthermore, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that the most significantly changed pathways between the four groups of mice were carbohydrate, lipid, and amino acid metabolism. In conclusion, our results showed that BA administration has beneficial effects on DSS-induced colitis, suggesting that this strategy might be useful for the treatment of dysbiosis during ulcerative colitis. Further, the changes in metabolism, especially amino acid metabolism, might contribute to the beneficial effects of BA on the amelioration of DSS-induced colitis

    High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    Get PDF
    Objective: To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods: One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared.Results: The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (Îș = 0.904). Conclusions: CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses

    PigBiobank: a valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs

    Get PDF
    © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.National Natural Science Foundation of China [32022078]; National Key R&D Program of China [2022YFF1000900]; Local Innovative and Research Teams Project of Guangdong Province [2019BT02N630]; China Agriculture Research System [CARS-35]. Funding for open access charge: National Natural Science Foundation of China [32022078].Peer reviewe

    Magnetic properties of sputtered CoCr films and magneto-optics of rare earth-transition metal multilayers

    No full text
    The goal of the thesis is to make contributions to the development of two new technologies for data storage: perpendicular recording and magneto-optic recording. CoCr and rare earth-transition metal multilayers are the most suitable media for perpendicular recording and magneto-optic recording technologies, respectively. In part A of the thesis, magnetic properties of CoCr thin films produced by dc magnetron sputtering are studied for various deposition conditions. Dielectric constants and extraordinary Hall effect are also studied to provide information complementary to magnetic properties. In part B, new methods are developed for theoretical analysis of the magneto-optics of rare earth-transition metal multilayers, which can be used to optimize the readout of the recording system. Part A For dc magnetron sputtered CoCr films the perpendicular and parallel magnetic coercivities are found to be mainly controlled by the substrate temperature during film growth. Substrate temperatures between 180 and 300 C are necessary to fabricate CoCr thin films for recording media. Films produced in this manner have magnetic anisotropy constants ranging from —1.0 to +0.5 10⁶erg/cc. The magnetic anisotropy has a complicated dependence on a large number of deposition parameters and can be best controlled by the dc sputtering power and the target-to-substrate distance. Based on microstructural analysis film properties are interpreted in terms of the adatom diffusion during film growth. It is found that high adatom mobility and low deposition rate promote positive magnetic anisotropy. The dielectric constants measured by ellipsometry are found to depend on the film thickness because of the change in film morphology during film growth. The effects of asymmetric sputtering are analyzed, and the relationship between the extraordinary Hall effect and the magnetic properties is investigated. Part B The 4x4 matrix method proposed by Lin-Chung and Teitler[P. J. Lin-Chung and S. Teitler, J. Opt. Soc. Am. A 1 703(1984)] is applied to the magneto-optics of the rare earth-transition metal multilayer system. Based on a plane wave model, the above method enables one to calculate the sensitivity of the readout to the layer thicknesses as well as effects of oblique angle of incidence, anisotropy in the nonmagnetic part of the dielectric constants and misalignment of the magnetization. Finally, an improved model is presented to take into account the fact that the reading laser is a strongly focused beam instead of a plane wave. This new model is used to optimize the magneto-optic multilayer system. When the focal spot size of the reading laser beam is less than about three wavelengths, significantly different results are obtained from the focused beam and the plane wave models.Science, Faculty ofPhysics and Astronomy, Department ofGraduat

    Electronic properties of NBS₂ single layers

    No full text
    A theory of optically and magnetically anisotropic NbS₂ platelets suspended in water is developed, and a two dimensional tight-binding model is used to describe the magnetic and optical properties of single layer NbS₂ and NbSe₂. For the first time both polarization and transition matrix effects are included in calculating the intensities of absorption of the transition metal dichalcogenides. The results are in qualitative agreement with experiments and can be interpreted in terms of the two dimensional(2D) nature of the band structure.Science, Faculty ofPhysics and Astronomy, Department ofGraduat

    Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    No full text
    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens
    • 

    corecore