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Aiming at the strong non-linear and non-stationary characteristics of power load, a
short-term power load forecasting method based on bald eagle search (BES)
optimization variational mode decomposition (VMD), convolutional bi-directional
long short-term memory (CNN-Bi-LSTM) network and considering error correction
is studied to improve the accuracy of load forecasting. Firstly, a decomposition loss
evaluation criterion is established, and the VMD optimal decomposition parameters
under the evaluation criterion are determined based on BES to improve the
decomposition quality of the signal. Then, the original load sequence is
decomposed into different modal components, and the corresponding CNN-Bi-
LSTM network prediction models are established for each modal component. In
addition, considering the influence of various modal components, holiday and
meteorological factors on the error, an error correction model considering short-
term factors is established to mine the hidden information contained in the error to
reduce the inherent error of the model. Finally, the proposed method is applied to a
public dataset provided by a public utility in the United States. The results show that
this method can better track the changes of load and effectively improve the
accuracy of short-term power load forecasting.
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1 Introduction

With the implementation of renewable energy policy, renewable energy has gradually
replaced fossil fuels and been rapidly applied to the power system. However, the large-scale
renewable energies are connected to the power grid, which could affect customers’ electricity
consumption behavior and load forecasting (Yang D. et al., 2023). Accurate power demand
forecasting is the basis for realizing safe and economic operation of power system and scientific
management of power grid, it helps to estimate future loads from recent loads using various
techniques in efforts to save energy, reduce costs, perform power management, and implement
economic dispatch plans (Talaat et al., 2020). The research shows that if the prediction error is
reduced by 1%, a 10 GW power station may save $1.6 million per year (Hobbs et al., 1999).
Therefore, establishing an accurate short-term power load forecasting model for a power system
is both required and beneficial.

The factors that affect the short-term power load mainly include meteorological, holidays,
user habits, etc. These factors are working together to make the power load sequence show
obvious volatility and nonlinearity characteristics, which undoubtedly increases the difficulty of
accurate prediction (Zhao et al., 2022). Therefore, it is necessary to study more accurate short-
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term power load forecasting methods. For the short-term power load
forecasting model, the research mainly includes statistical methods
and machine learning methods. Among them, the statistical methods
mainly include autoregressive integrated moving average model (Lee
and Ko, 2011), Kalman filter (Zhao et al., 2016), etc. The principle and
modeling of such methods are simple, and the statistical method can
fully reflect the temporal relationship between power load data, but its
nonlinear characteristics are not fully considered. Machine learning
algorithms can effectively deal with nonlinear problems. The
traditional machine learning methods mainly include: artificial
neural network (ANN) (Garcia-Ascanio and Mate, 2009), support
vector machine (SVM) (Jiang et al., 2018), random forest (RF) (Wu
et al., 2015), etc. ANN has self-learning ability and can effectively solve
the nonlinear problems in load data, but it is difficult to determine the
network structure scientifically, and has some defects such as local
minimum, large generalization error, the prediction accuracy is
usually difficult to meet the requirements. The SVM method solves
the local minimum question and has stronger generalization ability,
but the disadvantage of SVM is that it is sensitive to parameter
adjustment and kernel function selection. The RF algorithm is
applied to short-term power load forecasting, which has the
advantages of higher prediction accuracy and controllable
generalization error, but when the load fluctuation is large, the
prediction accuracy is not high. Although the above machine
learning methods can better reflect the nonlinear relationship
between data, the common problem of these methods lies in the
lack of consideration of the temporal correlation of time series data
(Rodrigues and Pereira, 2020).

With the development of deep learning, different types of neural
networks have been proposed one after another, which provides
different solutions to the problem that the timing and nonlinearity
of data cannot be considered at the same time in power load
forecasting. Such as long short-term memory network (LSTM),
convolutional neural network (CNN) and deep belief network
(DBN) (Chen et al., 2021). Among them, LSTM network has the
characteristics of preserving the timing and nonlinearity of data at the
same time, so its application in power load forecasting, renewable
energy output power forecasting and other fields is increasing. As an
optimization of LSTM network, gated recurrent unit (GRU) not only
achieves its approximate accuracy, but also has the advantages of less
training parameters and fast speed. In addition, bi-directional long
short-term memory (Bi-LSTM) network is used for load forecasting,
which has better expression ability for continuous time series, and the
reuse of weight parameters makes it have lower requirements for data
(Kwon et al., 2020; Zang et al., 2021).

However, although GRU and other models can fully respond to
the long-term historical process in the input time series data, the
effective information between discontinuous data cannot be extracted,
and thus the potential relationship between data cannot be deeply
mined. With the diversification of training data types and the increase
of power grid demand for load forecasting accuracy, the combined
forecasting model came into being to further improve the accuracy of
load forecasting (Muhammed et al., 2021). Lu et al. (2019) proposed a
short-term load forecasting model combining CNN with LSTM
network. CNN is used to extract the potential relationship between
continuous data and discontinuous data in the feature map and form
the feature vector. Then, the feature vector is used as the input of
LSTM for load forecasting. Lee and Cho, (2022) determined the most
accurate peak load-forecasting model by comparing the performance

of time series (Seasonal autoregressive integrated moving average with
exogenous variables, SARIMAX), machine learning (Support vector
regression, SVR, etc.) and hybrid models (SARIMAX-ANN, etc.). The
results indicate that the hybrid models exhibit significant prediction
performance.

With the continuous development of data decomposition
algorithm, in order to reduce the impact of volatility and
nonlinearity in power load series and further improve the accuracy
of short-term load forecasting, the hybrid forecasting method
combining data decomposition algorithm with existing forecasting
models has been widely used in power load forecasting (Zhang et al.,
2022). Empirical mode decomposition (EMD) is an adaptive signal
decomposition method based on local characteristics of signals. This
method overcomes the difficulty of selecting wavelet basis and
determining decomposition scale in wavelet transform (WT), so it
is more suitable for nonlinear and non-stationary signal analysis
(Zhang et al., 2021). Meng et al. (2021) proposed a short-term load
forecasting approach integrating EMD, bi-directional long short-term
memory and attention mechanism. EMD decomposes the load series
into a finite number of components or modes [called intrinsic mode
functions (IMFs)] with different characteristic scales, and decomposes
the fluctuations or trends of different scales that actually exist in the
signal step by step, then a Bi-LSTM neural network based on attention
mechanism is applied on each of the extracted IMFs to predict the
tendencies of these IMFs, finally, the prediction results of each
component are superposed to obtain the load prediction value.
Compared with the original load data series, the decomposed series
has stronger regularity and can improve the prediction accuracy.
Kassa et al. (2019) proposed a short-term load forecasting model of
microgrid by combining empirical mode decomposition, particle
swarm optimization (PSO) and adaptive neural fuzzy inference
system (ANFIS). The complex load sequence is decomposed into a
set of modal functions and a residual by EMD, and then the ANFIS
model of each modal function component and residual are optimized
by PSO algorithm, each modal function component and residual are
predicted separately to improve the prediction accuracy. However,
EMD needs to solve the problems of modal mixing, end effect and over
envelope. Liang et al. (2018) decomposed the original sequence of
power load into multiple modal functions with different
characteristics by VMD, and the prediction model is established
through DBN optimized by PSO algorithm, to improve the
prediction accuracy; Ye et al. (2022) proposed a load forecasting
method based on VMD and multi-model fusion to solve the
problem of strong volatility and randomness of multi load in user
level integrated energy system and the difficulty of accurate
forecasting; Yang Y. et al. (2023) used VMD to decompose the
original data into several sub-sequences, which enables it to extract
the implied features to separately predict each sub-sequence to
improve the prediction accuracy of the short-term load forecasting.
Compared with WT and EMD, VMD is widely used in the fields of
power load forecasting and renewable energy power signal
decomposition due to its strong self-adaptability and ability to
overcome modal mixing (Zhou et al., 2021). However, the
following problems still exist:

(1) In VMD process, there is no evaluation standard to guide
parameter setting, and parameters are often given by
experience, which leads to unsatisfactory decomposition effect.
Yuan and Che, (2022), Dou et al. (2018).
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(2) VMD uses a quadratic penalty factor in the construction of the
variational problem, which over punishes the internal jump of the
signal, which is easy to generate prediction errors, and the
previous research did not make full use of the implicit
information in the error. Yan and Tian, (2019).

According to the literatures above, to solve the above problems,
meet the challenges of short-term power load forecasting brought by
the obvious volatility and nonlinear characteristics of power load due
to its vulnerability to various factors, and further improve the accuracy
of short-term power load forecasting, a combined short-term power
load forecasting method based on BES-VMD-CNN-Bi-LSTM-EC
model is proposed in this paper. The forecasting process is divided
into two stages: In the first stage, the VMD method optimized by BES
algorithm is used to decompose the complex power load data into
different subsequence components and then the CNN-Bi-LSTM
forecasting model of each load component is established,
subsequently, the independent prediction results of each
component are reconstructed to obtain the predicted load
sequence. In the second stage, an error correction model based on
CNN-Bi-LSTM network is established to obtain the predicted error
sequence to correct the predicted load sequence before. At last, the
final load forecasting results are obtained and further improve the
short-term load forecasting effect.

The main contributions of this paper are as follows: 1) The VMD
method optimized by bald eagle search (BES) decomposes the non-
stationary and nonlinear power load series into components with
different frequencies, which effectively reduces the complexity of the
load series. 2) The CNN-Bi-LSTM prediction model of each load

subsequence is established to improve the feature extraction and
dimension reduction ability of the model to the original data. 3)
An error correction model considering short-term factors, such as
holiday and meteorological factors on the error is established, which
reduces the inherent error of the prediction model by mining the
effective information hidden in the error. 4) The method proposed in
this paper is applied to the actual load verification of the data set
published in the 2012 global energy forecasting competition, and the
experimental results show its effectiveness in short-term power load
forecasting.

The rest of this paper is organized as follows: Section 2 provides
the methodology of VMD. Section 3 analyzes the superiority of BES
optimization algorithm by simulation experiments. Section 4
introduces the proposed hybrid prediction method in detail. A case
study is given to verify the effectiveness of the proposed model in
Section 5. Finally, the conclusion is presented in Section 6.

2 Methodology of VMD

VMD is an adaptive signal decomposition method, which can
effectively deal with non-stationary and nonlinear signals. By
iteratively searching the variational mode, the original time series
f(t) is decomposed into different components uk(t) with limited
bandwidth, and its corresponding center frequency is ωk. Taking
the decomposition of power load signal as an example, the steps of
constructing the variational problem are as follows:

(1) For each load component uk(t), Hilbert transform is used to
calculate and analyze the signal, and its one-sided spectrum is
obtained as follows:

δ t( ) + j
πt

( )*uk t( ) (1)

(2) For each uk(t), the spectrum of each component is modulated to
the corresponding fundamental frequency band by mixing an
exponential term of its corresponding center frequency, as follows:

δ t( ) + j
πt

( )*uk t( )[ ]e−jωkt (2)

(3) The Gaussian smoothing method of demodulated signal is used to
estimate the signal bandwidth of each subsequence, and the
variational problem with constraints is solved. The objective
function is:

min
uk{ }, ωk{ }

∑K
k�1

zt δ t( ) + j
πt

( )*uk t( )[ ]e−jωkt

������� �������2
2

⎧⎨⎩ ⎫⎬⎭
s.t.∑K

k�1
uk � f t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (3)

where, {uk} = {u1,u2···uK} is the k modal components obtained after
decomposition. {ωk} = {ω1,ω2···ωK} is the center frequency
corresponding to each modal component. zt means partial
derivative. δ(t) represents the impulse function. * represents a
convolution operation.

By introducing Lagrange multiplication operator λ and the
quadratic penalty factor α, the above constrained extreme value

FIGURE 1
Flow chart of VMD.
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problem is transformed into an unconstrained problem for solution, as
shown in the following formula:

L uk{ }, ωk{ }, λ( ) � α∑K
k�1

zt δ t( ) + j

πt
( )*uk t( )( )e−jωkt

������� �������22
+ f t( ) −∑K

k�1
uk t( )

���������
���������
2

2

+ 〈λt, f t( ) −∑K
k�1

uk t( )〉
(4)

The alternating direction multiplier method is used for ωk and uk
is optimized as follows:

ωn+1
k �

∫∞

0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω
∫∞

0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω

ûn+1
k ω( ) �

λ̂
n
ω( )
2

+ f̂ ω( ) −∑k
i�1
ûn+1
i ω( ) − ∑K

i�k+1
un
i ω( )

1 + 2α ω − ωn
k( )2

(5)

Where, ωn+1
k is the center of gravity of the power spectrum of the

current modal function. ûn+1k is the wiener filtering of the current
signal.^ is Fourier transform. n is the number of iterations.

Carry out cyclic iterative solution according to (5), update uk and
ωk, and bring in (6) for update λ:

λ̂
n+1

ω( ) � λ̂
n
ω( ) + τ f̂ ω( ) −∑K

k�1
ûn+1
k ω( )⎡⎣ ⎤⎦ (6)

where τ is the renewal coefficient of λ. For discrimination accuracy ξ >
0, iteration stop condition exists:

∑K
k�1

ûn+1
k ω( ) − ûn

k ω( )���� ����22
ûn
k ω( )���� ����22 < ξ (7)

If ξmeets the iteration stop condition, the iteration cycle ends and
the adaptive decomposition of the input signal is realized. if not, brings
uk and ωk in (5) again and starts a new round of iteration until the
condition is met.

The flow chart of VMD is shown in Figure 1.

3 BES optimization algorithm

3.1 Bald eagle search

BES is a novel metaheuristic algorithm, which has strong global
search ability and can effectively solve various complex numerical
optimization problems (Ahmed et al., 2022). The selection of VMD
parameters can be regarded as an optimization problem. Therefore,
this paper decides to use BES algorithm to optimize VMD
parameters. BES algorithm simulates the predator-prey
mechanism of bald eagle. The core optimization part of each
iteration mainly includes three stages: selection space, search
space and swooping phase.

(1) Selection space: bald eagles recognize and choose the best space,
this selected space should be rich in prey, this can be implemented
by the following equation:

Pi,new � Pbest + α × γ × Pmean − Pi( ) (8)
where, Pbest is the search area selected using the best position
identified in the previous search. α is a controlling parameter that
adapts the positions’ changes. γ is a random number in range of
[0,1]. Pmean is the mean position. Pi is the current position of ith
bald eagle.

(2) Search space: the bald eagle accelerates the search in a spiral shape
to determine the best capture position. The position is updated as
follows:

Pi,new � Pi + x i( ) × Pi − Pmean( ) + y i( ) × Pi − Pi+1( ) (9)

FIGURE 2
Function space.

FIGURE 3
Optimization process of multi optimization algorithms.
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x i( ) � xr i( )
max xr| |( );xr i( ) � r i( ) × sin θ i( )[ ]

y i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( );yr i( ) � r i( ) × cos θ i( )[ ]

r i( ) � θ i( ) + R × rand

θ i( ) � a × π × rand

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

where, x(i) and y(i) are the position coordinates of ith bald eagle. r(i) is the
polar radius of the equation. θ(i) is the polar angle of the direction. a
determines the angle between the search point and the central point, it is
assigned in range of [5,10]. R is a parameter that determines the search
cycles’ number, it is assigned in range of [0.5, 2]. rand is a random number.

(3) Swooping phase: the bald eagle quickly pounced on the prey
according to the best position obtained in the previous stage and
told other bald eagles to start swooping. Its position was updated
as follows:

Pi,new � r and × Pbest + x1 i( ) × Pi − c1 × Pmean( )
+ y1 i( ) × Pi − c2 × Pbest( ) (11)

x1 i( ) � xr i( )
max xr| |( );xr i( ) � r i( ) × sinh θ i( )[ ]

y1 i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( );yr i( ) � r i( ) × cosh θ i( )[ ]

θ i( ) � a × π × rand

r i( ) � θ i( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where, x1(i) and y1(i) denote the position coordinates of the target
prey. c1 and c2 are the parameters used to control the exercise intensity,
and the values are [1,2].

3.2 Simulation experiment and analysis

In order to discuss the significance of the BES algorithm, the
optimization comparison experiment of the two-dimensional
simulation function in (13) is carried out.

f � x2 + 10 × cos 2πx( ) + y2 + 10 × cos 2πy( ) + 20 (13)
Whale optimization algorithm (WOA) (Mirjalili and Lewis, 2016),

particle swarm optimization (PSO) algorithm (Massaoudi et al., 2021),

FIGURE 4
CNN-Bi-LSTM hybrid model.

FIGURE 5
Short term load forecasting model via BES-VMD-CNN-Bi-LSTM-EC.
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grey wolf optimizer (GWO) algorithm (Mirjalili et al., 2014), moth-
flame optimization (MFO) algorithm (Mirjalili, 2015) and BES
algorithm are used respectively to find the minimum value of this
function. In order to maintain the rationality of the experimental
results and the consistency of the parameters of various algorithms,
the population size is set to 30 and the maximum iterations is set to
100. The function space is shown in Figure 2.

The optimization process of each optimization algorithm is shown
in Figure 3.

As can be seen from Figure 3, in terms of optimization speed,
WOA finds the minimum value after the 41st iteration, which is
0.49778. PSO finds the minimum value after the 92nd iteration,
which is 0.49753. GWO finds the minimum value after the 98th
iteration, which is 0.4975. MFO finds the minimum value after the
43rd iteration, which is 0.49748. BES finds the minimum value after
the 36th iteration, which is 0.4974797. In terms of optimization
accuracy, the accuracy of BES reaches 7 digits after the decimal
point, which is closer to the global minimum value. WOA, PSO,
GWO, MFO meta heuristic optimization algorithms have certain
advantages in optimization, BES optimization is a new meta
heuristic optimization algorithm, which has strong global search
ability and can effectively solve various complex numerical
optimization problems. Based on the above analysis, for VMD
parameter selection, it can be regarded as an optimization problem.
Compared with WOA, PSO, GWO and MFO, BES optimization
algorithm shows certain advantages among them, so this paper uses
BES algorithm to optimize VMD parameters.

4Hybridmodels and predictionmethods

4.1 CNN-Bi-LSTM hybrid model

CNN model can obtain effective representation directly from the
original signal through the alternate use of convolutional layer and
pooling layer through local connection and weight sharing, and
automatically extract the local features of the data, so as to
establish a dense and complete feature vector. So, this paper selects
CNN model to extract load data features.

For Bi-LSTM, the input of the model is output after passing
through the LSTM network in sequential and reverse directions
respectively (Tang et al., 2019; Tian et al., 2021). The output of the
model contains the information of the input sequence in forward

direction and backward direction at the same time, and the weight
reuse further improves the expression ability of the network, while the
total amount of data demand remains unchanged, so the risk of under
fitting is reduced. Therefore, considering the fluctuation and
uncertainty of input data in power load forecasting, CNN is fused
on deep Bi-LSTM network to improve the ability of feature extraction
and dimension reduction of the model on the original data.

According to the existing experience, there are various factors
that affect power load, mainly include: historical load,
meteorological factors, date type, etc. Yang J. et al. (2021).
Among them, due to the time series characteristics of load, the
prediction model can learn the recent change rule of load according
to the load daily data that is close to the date to be predicted, which
can enrich the prior information of the prediction model. Based on
this, this paper selects the historical load data 1 day before the
forecast date as one of the characteristics that affect short-term load
forecasting; Meteorological factors have a crucial impact on short-
term load forecasting. Among them, the common influencing
factors are temperature, followed by humidity, wind speed,
precipitation, air pressure, etc. Due to the limitations of the
experimental data in this paper, only considers temperature as
one of the characteristics that affect short-term load forecasting;
Date type is another important factor affecting short-term forecast.
At present, urban power load is still dominated by industrial power,
and the power load on non-working days (Saturday, Sunday,
holidays) is significantly less than that on working days
(Monday to Friday). Therefore, this paper lists the date type
(weather it is Saturday or Sunday, whether it is a legal holiday)
as characteristics that affect the load forecasting results.

Based on the above analysis, in this paper, the input X includes
the following 8 characteristics: historical load, temperature, data (x
year, x month, x day), time (x hour), whether it is Saturday or
Sunday, whether it is a legal holiday, expressed as X = [x1, x2, x3, x4,
x5, x6, x7, x8]. And the other prediction models maintain the same
input characteristics. The structure of CNN-Bi-LSTM hybrid
model proposed in this paper is shown in Figure 4.

TABLE 1 Center frequency of different K.

K 3 4 5 6 7 8

u1 0.7854 0.6283 0.5236 0.4488 0.3927 0.3491

u2 1.5708 1.2566 1.0472 0.8976 0.7854 0.6981

u3 2.3562 1.8277 1.5708 1.3464 1.1781 1.0472

u4 2.5133 2.0808 1.8296 1.5708 1.3077

u5 2.6180 2.0914 1.8306 1.8298

u6 2.6156 2.3551 2.0908

u7 2.6196 2.3566

u8 2.8729

FIGURE 6
Real load sequence and O-VMD results.
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As show in Figure 4, CNN is used to extract the effective feature
vector, and the feature vector is constructed in the form of time
series and used as the input data of Bi-LSTM network. The depth of
the prediction model can be increased by adding Bi-LSTM network
units to improve the prediction effect of the network. In order to
facilitate the subsequent comparison, the sliding window width is
24 records; Step size is 1. The hyperparameters of each CNN-Bi-

LSTM model are obtained by grid search method. Dropout
technology is used between Bi-LSTM layers to prevent model
over fitting. Finally, vectors in the specified format are output
through dense.

4.2 BES-VMD-CNN-Bi-LSTM-EC hybrid
model

For the data-driven prediction model, it is necessary to determine
its input sequence and output sequence. Since the load at the time of
the day to be predicted has a strong correlation with the load of the
previous day, the 24-h characteristic data of the previous day is
selected as the input, and the output is the load value of each hour
of the day to be predicted. The short-term power load forecasting
model based on BES-VMD-CNN-Bi-LSTM-EC in this paper is shown
in Figure 5.

The whole forecasting process is divided into two stages:

(1) In the first stage, several component prediction models based on
BES-VMD-CNN-Bi-LSTM hybrid network are constructed.
Firstly, a decomposition loss function (Loss) is defined as the
evaluation criteria, and the optimal number of components K and
the penalty factor α are found through the BES algorithm under
this evaluation criteria. Then, the real load sequence is
decomposed into K modal components by VMD, which are
recorded as IMF1, IMF2, . . ., IMFK and the corresponding
CNN-Bi-LSTM hybrid network models are established. Finally,
the independent prediction results of each sub series are
reconstructed to obtain the predicted load sequence.

(2) In the second stage, an error correctionmodel considering short-term
factors is proposed. Considering that the influence of nonlinear and
short-term fluctuation factors of the sequence itself, various modal
components, holiday (whether it is Saturday or Sunday and whether
it is a legal holiday) andmeteorological factors (ambient temperature)
are selected as the input of the error correction model. The error
sequence obtained by subtracting the reconstructed load sequence
from the real load sequence is used as the output. Subsequently, an
error correction model based on CNN-Bi-LSTM network is
established to obtain the predicted error sequence to correct the
predicted load sequence before. At last, the final load forecasting
results are obtained and further improve the short-term load
forecasting effect.

FIGURE 7
VMD parameters optimized by BES algorithm.

FIGURE 8
Optimization process of multi optimization algorithms.

Frontiers in Energy Research frontiersin.org07

Wang and Li 10.3389/fenrg.2022.1076529

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1076529


4.3 Evaluation indices

To verify the effectiveness of the proposed model, mean absolute
percentage error (MAPE) and root mean square error (RMSE) are
used to evaluate the forecasting results, and their specific expressions
are as follows:

MAPE � 1
n
∑n
i�1

yact i( ) − ypred i( )
yact i( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100%

RMSE �
��������������������∑n

i�1 yact i( ) − ypred i( )( )2
n

√ (14)

where, n represents the total number of samples. yact(i) and ypred(i) are
the real and predicted load values at time i, respectively.

5 Case study

The experimental computer is configured as: Windows 10 64-bit
operating system; Intel(R) Core (TM)i7-8700 CPU; 32GB memory;
NVIDIA GeForce RTX 2070 graphics card, which is based on Python
3.6 and tensorflow1.12 operating environment.

5.1 Dataset collection

The experimental data comes from the 2012 global energy
forecasting competition published data set, including the hourly
load data, the corresponding temperature dataset and holiday
information of 20 areas (Hong et al., 2014). The case takes the
load data of area 6 from 29 November 2006 to 29 June 2008 as the
original data, and divides it into training set, verification set and test
set according to the ratio of 8:1:1. The sampling interval is 1 h and
24 points are collected in 1 day. The input includes 8 characteristics:
historical load, temperature, year, month, day, hour, whether it is
Saturday or Sunday and whether it is a legal holiday. RF, SVM, LSTM,
GRU, Bi-LSTM, CNN-LSTM, CNN-GRU, CNN-Bi-LSTM, O-VMD-
CNN-LSTM, O-VMD-CNN-GRU, O-VMD-CNN-Bi-LSTM and
BES-VMD-CNN-Bi-LSTM are selected as comparison models to
verify the feasibility and effectiveness of the proposed model BES-
VMD-CNN-Bi-LSTM-EC.

After determining the input characteristics, it is necessary to
normalize them to improve the convergence speed of the model. In
this paper, the max-min normalization method is used to normalize
the characteristic series such as historical load, temperature, year,
month, day and hour to the range of [0,1]. The dummy variable is used
to represent the weekend and legal holiday characteristics, where logic
not represented by 0 and logic yes is represented by 1.

5.2 VMD parameter optimization

5.2.1 Central frequency method
The selection of the number of modal components K directly

affects the results of VMD. If K is too large, it will lead to modal

FIGURE 9
Real load sequence and BES-VMD results.

FIGURE 10
(A) Load forecasting results for a continuous week. (B) Load forecasting results of 1 day.
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repetition or additional noise; if K is too small, the modal under
decomposition will occur, resulting in the decline of the accuracy of
the subsequent prediction model. Generally, the range of K is set to
[3, 8], and the center frequencies corresponding to different
components are different (Yang L. et al., 2021). Therefore, set
K = 3, 4, . . ., 8 to conduct experiments respectively, and obtain
the center frequencies of each component corresponding to different
K values. When the K with similar center frequency appears for the
first time, it is marked, and determine K-1 as the number of modal
components to decompose the original load sequence. In this paper,
the method of determining VMD parameter by central frequency

method is expressed as O-VMD. 1000 time series load samples with
non-linear and non-stationary are randomly selected and
decomposed by VMD to obtain different components. Table 1
shows the center frequencies of various component corresponding
to different K values.

It can be seen from Table 1 that when K is 6, the center frequencies
of modal components u4 and u5 are 1.8296 and 2.0914 respectively.
The center frequencies of the two components are approximate and it
is over decomposed at this time. When K = 8, the center frequencies of
u5 and u6 are approximate, so the number of components K is
determined to be 5. Based on this, the above 1000 time series load
samples and their O-VMD decomposition results are shown in
Figure 6. It can be seen from Figure 6 that the average amplitude
of IMF3, IMF4 and IMF5 is small, with large fluctuations and poor
regularity; For mode function IMF2, the regularity is relatively good
and the periodicity is relatively obvious; the average amplitude of the
modal function IMF1 is large, the change is gentle, and the regularity is
easiest to grasp. Later, these five modal functions will be modeled
separately for short-term load forecasting of O-VMD combined
method.

5.2.2 VMD parameters optimized by BES
In addition to the selection of the value of K, the penalty factor α

affects the reconstruction accuracy of VMD signal. Considering the
influence of decomposition loss on forecasting accuracy, an evaluation
criterion suitable for load forecasting is selected to determine VMD
parameters. The evaluation criterion is defined as follows:

Loss � ∑T
t�1 f t( ) − f* t( )∣∣∣∣ ∣∣∣∣

T
(15)

TABLE 2 Statistical results of load forecasting of multi models for a week.

Data Evaluation
indices

LSTM GRU Bi-
LSTM

CNN-
LSTM

CNN-
GRU

CNN-Bi-
LSTM

O-VMD-
CNN-LSTM

O-VMD-
CNN-GRU

O-VMD-CNN-
Bi-LSTM

5.28 MAPE/% 2.239 2.168 2.884 2.372 2.368 2.026 1.779 1.700 1.969

RMSE/W 4279.803 4268.401 5582.589 5099.821 5084.939 4084.497 4286.851 3643.955 3994.475

5.29 MAPE/% 4.185 4.614 3.984 3.467 3.997 3.370 2.956 3.021 1.861

RMSE/W 8026.197 8786.023 7128.647 6231.173 7056.000 5852.356 5464.282 5474.566 3603.659

5.30 MAPE/% 4.671 4.241 3.384 2.898 3.505 2.762 2.405 2.536 1.672

RMSE/W 10412.717 10680.822 7999.168 5289.279 6846.205 5580.044 4522.963 5379.496 3434.211

5.31 MAPE/% 3.716 4.525 2.965 2.138 2.609 2.204 1.522 1.410 1.628

RMSE/W 6881.564 7956.794 5155.348 3971.573 5705.526 4618.904 3516.774 2874.201 3737.865

6.1 MAPE/% 4.736 4.956 3.816 4.323 3.170 4.058 2.166 2.690 1.733

RMSE/W 9953.686 10662.705 6840.285 7843.259 5594.357 8415.958 4175.499 4779.977 3057.508

6.2 MAPE/% 2.052 2.211 1.896 1.779 1.999 1.512 1.729 1.571 1.476

RMSE/W 4466.192 5536.210 4112.376 4076.161 4032.588 3168.142 3151.935 3330.703 3244.042

6.3 MAPE/% 3.546 3.770 2.823 2.157 3.090 1.582 1.189 2.013 1.641

RMSE/W 8630.803 9190.872 6940.003 4832.514 6498.362 3480.811 2675.668 4500.534 3577.321

Mean MAPE/% 3.592 3.784 3.107 2.734 2.962 2.502 1.964 2.134 1.711

RMSE/W 7856.123 8465.215 6374.189 5478.145 5914.324 5296.709 4063.585 4385.787 3533.048

FIGURE 11
Load forecasting results of different models.
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where, f(t) is the original load sequence, f*(t) is the reconstructed
sequence, T is the length of time.

Loss is the average absolute error between the original load sequence
and the reconstructed sequence. The smaller Loss is, the smaller the signal
decomposition loss is and the more accurate the prediction model is.
Therefore, the parameter selection problem of VMD is expressed as a
constrained optimization problem, as follows:

min
K,α

∑T
t�1 f t( ) − f* t( )∣∣∣∣ ∣∣∣∣

T
(16)

where, K∈[3,10], α∈[100,10000].
The flow chart of VMD parameters optimized by BES algorithm is

shown in Figure 7.WOA, PSO, GWO,MFO and BES algorithms are used
to optimize the parameters of the VMD respectively. In order to maintain
the consistency of the parameters of various algorithms, the population
size is set to 20 and the maximum iterations is set to 100. Figure 8 shows
the optimization process of the decomposition loss of different algorithms.

It can be seen from Figure 8 that when the MFO algorithm is used
to determine the decomposition parameters, the decomposition loss is
high and after the 7th iteration, the minimum decomposition loss is
124.1831. PSO, GWO and WOA algorithms achieve the minimum
decomposition loss after the 14th, 9th and 5th iterations respectively.
For BES algorithm, the minimum decomposition loss is 104.1395 after
the 4th iteration, the optimization speed is the fastest, at this time, the
K is 6 and α is 100. Thus, BES-VMD algorithm can adaptively
determine the optimal decomposition parameters to improve the
decomposition effect of VMD. The original load sequence and
their BES-VMD decomposition results are shown in Figure 9. It
can be seen from Figure 9 that the average amplitude of IMF4,
IMF5 and IMF6 is small, with large fluctuations and poor
regularity; For mode function IMF2, IMF3, the regularity is
relatively good and the periodicity is relatively obvious; the average
amplitude of the modal function IMF1 is large, the change is gentle,
and the regularity is easiest to grasp. Later, these six modal functions

TABLE 3 Statistical results of load forecasting of different models on a certain day.

Time Real
value(W)

Bi-LSTM RF SVM O-VMD-CNN-Bi-LSTM

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

Forecasting
value(W)

RMSE/
%

1 130614 129512.86 0.84 132388.69 1.36 129047.94 1.20 130377.37 0.18

2 123397 124323.71 0.75 125145.89 1.42 120801.18 2.10 121825.66 1.27

3 119533 121094.10 1.31 122059.56 2.11 118050.89 1.24 118645.14 0.74

4 118602 121383.05 2.35 118700.41 0.08 117672.35 0.78 119880.66 1.08

5 121868 125849.23 3.27 118977.05 2.37 119324.85 2.09 120348.36 1.25

6 132794 136656.45 2.91 125492.11 5.50 125401.02 5.57 130332.52 1.85

7 151069 151507.06 0.29 144555.89 4.31 142868.50 5.43 142957.33 5.37

8 163931 163753.02 0.11 163603.09 0.20 166685.13 1.68 158739.33 3.17

9 169347 172556.62 1.90 168686.86 0.39 176466.46 4.20 167796.38 0.92

10 173614 178512.38 2.82 170748.00 1.65 176589.88 1.71 174767.69 0.67

11 179066 182815.70 2.09 177240.68 1.02 178650.46 0.23 177099.28 1.10

12 181716 186098.44 2.41 181787.26 0.04 183342.50 0.90 180187.19 0.84

13 185300 187316.34 1.09 184251.57 0.57 183753.65 0.84 182638.75 1.44

14 188863 187857.31 0.53 187338.82 0.81 185012.15 2.04 186455.77 1.28

15 192985 188689.06 2.23 190846.28 1.11 189061.08 2.03 189907.83 1.60

16 193328 190072.86 1.68 195505.85 1.13 194253.84 0.48 193711.31 0.20

17 200931 191464.84 4.71 194401.10 3.25 193330.75 3.78 196395.72 2.26

18 203717 194998.72 4.28 203406.80 0.15 201557.61 1.06 199421.53 2.11

19 204498 196853.17 3.74 202139.56 1.15 201938.72 1.25 199636.78 2.38

20 198605 197631.62 0.49 201826.73 1.62 202803.61 2.11 198720.61 0.06

21 195325 196109.64 0.40 196579.47 0.64 193182.28 1.10 195166.17 0.08

22 190719 185620.56 2.67 186628.00 2.15 183333.71 3.87 184283.45 3.37

23 169934 168566.16 0.81 177329.80 4.35 176176.66 3.67 169751.48 0.11

24 149126 151858.47 1.83 154795.98 3.80 153921.44 3.22 152277.05 2.11

Mean 1.90 1.72 2.19 1.48
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will be modeled separately for the short-term load forecasting of BES-
VMD combined method.

5.3 Analysis of prediction results

5.3.1 Results analysis of CNN feature extraction and
O-VMD

To verify the effectiveness of CNN feature extraction and the
effectiveness of VMD decomposition in the load forecasting model,
9 different models are used to conduct short-term load forecasting on
the load data of a continuous week (from 28 May to 3 June 2008).

Figure 10A shows the load forecasting results for a continuous week;
Figure 10B shows the load forecast results of 1 day (June 2). The
statistical description of specific prediction results is shown in Table 2.

About the effectiveness of CNN feature extraction prediction
model, it can be seen from Figure 10 and Table 2 that,
compared with single prediction models like LSTM, GRU and Bi-
LSTM, the prediction accuracy of the corresponding CNN-LSTM,
CNN-GRU and CNN-Bi-LSTM hybrid models established by CNN
feature extraction has been improved to varying degrees. Among
them, MAPE decreased by 0.858%, 0.822% and 0.605%
respectively. RMSE decreased by 2377.978W, 2550.891W and
1077.48W respectively. Compared with CNN-LSTM and CNN-
GRU, the load forecasting accuracy based on CNN-Bi-LSTM
model is higher.

About the effectiveness of the VMD (take O-VMD as an example)
signal decomposition load forecasting model, According to Figure 10
and Table 2, the outputs of each load forecasting model are compared
and analyzed from the perspective of the average value of its evaluation
indices. Compared with CNN-LSTM, CNN-GRU and CNN-Bi-LSTM
models before VMD, the prediction performance of the corresponding
hybrid prediction models O-VMD-CNN-LSTM, O-VMD-CNN-GRU
and O-VMD-CNN-Bi-LSTM established after VMD of the original
load series has been improved. Among them, MAPE decreased by
0.770%, 0.828% and 0.791% respectively. RMSE decreased by
1414.560W, 1528.537W and 1763.661W respectively. Compared
with O-VMD-CNN-LSTM and O-VMD-CNN-GRU models, the
MAPE of O-VMD-CNN-Bi-LSTM model decreased by 0.253% and
0.423% respectively. RMSE decreased by 530.537W and 852.739W
respectively.

In conclusion, the effectiveness of VMD and CNN feature
extraction are verified. Among them, the MAPE and RMSE of
O-VMD-CNN-Bi-LSTM model is the smallest. Besides, although

TABLE 4 Comparison of statistical results of load forecasting errors for a week.

Data Evaluation indices O-VMD-CNN-Bi-LSTM BES-VMD-CNN-Bi-LSTM BES-VMD-CNN-Bi-LSTM-EC

5.28 MAPE/% 1.969 1.155 1.266

RMSE/W 3994.475 2281.845 2929.620

5.29 MAPE/% 1.861 1.397 1.155

RMSE/W 3603.659 2942.044 2665.914

5.30 MAPE/% 1.672 1.077 0.905

RMSE/W 3434.211 2727.750 2469.104

5.31 MAPE/% 1.628 1.587 1.401

RMSE/W 3737.865 4066.452 3152.410

6.1 MAPE/% 1.733 1.653 1.413

RMSE/W 3057.508 3449.741 2731.502

6.2 MAPE/% 1.476 1.775 1.060

RMSE/W 3244.042 4294.555 2533.319

6.3 MAPE/% 1.641 1.091 0.801

RMSE/W 3577.321 2286.436 1722.205

Mean MAPE/% 1.711 1.391 1.143

RMSE/W 3533.048 3238.403 2634.082

FIGURE 12
Load forecasting results for a week.
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the hybrid prediction model based on Bi-LSTM takes a relatively long
time, it obtains the highest prediction accuracy and meets the
requirements of engineering applications.

In order to further verify the effectiveness of the proposed
O-VMD-CNN-Bi-LSTM model, Bi-LSTM, RF and SVM are used
as comparison models to predict the load at 24 h (2 June). The load
forecasting results of different models are shown in Figure 11, and the
statistical description results are shown in Table 3.

As shown in Figure 11, each model can better predict the change
trend of load. Combined with Table 3, compared with Bi-LSTM, RF
and SVM prediction methods, the mean RMSE of O-VMD-CNN-Bi-
LSTM model at 24 h decreased by 0.42%, 0.24% and 0.71%
respectively. Thus, the effectiveness of the prediction method based
on O-VMD-CNN-Bi-LSTM is further verified.

5.3.2 Results analysis of BES-VMD and error
correction

First, according to the above analysis, the prediction error of
O-VMD-CNN-Bi-LSTM model is the smallest, so the comparison
experiment is carried out based on this model to analyse the
effectiveness of the power load prediction model of BES-VMD-
CNN-Bi-LSTM.

Secondly, the prediction error correction experiment is carried out
based on BES-VMD-CNN-Bi-LSTM (the prediction model before error
correction). Taking various modal components, holidays (whether
Saturday or Sunday, and whether it is a legal holiday) and
meteorological factors (ambient temperature) as the input of the error
correction model, the load prediction model after error correction is
established (the proposed method, BES-VMD-CNN-Bi-LSTM-EC).

Table 4 shows the statistical results of load forecasting errors for a
week (from 5.28 to 6.3) based on O-VMD-CNN-Bi-LSTM, BES-
VMD-CNN-Bi-LSTM and BES-VMD-CNN-Bi-LSTM models.

According to Table 4, compared with O-VMD-CNN-Bi-LSTM
method, the weekly mean MAPE and RMSE of BES-VMD-CNN-Bi-
LSTM method are reduced by 0.320% and 294.645W respectively,
indicating that the overall prediction accuracy and model performance
of this method are greatly improved. Thus, the effectiveness of
BES optimization algorithm in power load forecasting is further verified.

It can be seen from Table 4 that compared with BES-VMD-CNN-
Bi-LSTM method, the weekly mean MAPE and RMSE of BES-VMD-
CNN-Bi-LSTM-EC method are reduced by 0.248% and 604.321W
respectively, which verifies the effectiveness of the error correction
method. Figure 12 shows the prediction results of the proposed
method with O-VMD-CNN-Bi-LSTM method.

More intuitively, it can be seen from Figure 12 that the proposed
method can better fit the actual load change trend, especially near the
peak point, and the prediction accuracy is higher, which further
verifies that the BES-VMD-CNN-Bi-LSTM-EC method can
effectively reduce the prediction error of short-term power load
with excellent prediction performance.

6 Conclusion

Aiming at the characteristics that short-term power load
forecasting is easily affected by many factors, in order to improve
the accuracy of short-term load forecasting, a short-term load
combination forecasting method based on BES-VMD-CNN-Bi-
LSTM-EC is proposed in this paper. The conclusions are as follows:

(1) As the current forecasting methods based on traditional statistical
analysis and machine learning are difficult to consider both the
temporal and nonlinear characteristics of load data, Bi-LSTM
model can better fit the temporal and complex nonlinear
relationship of load data, it can learn the information of the
load sequence in the forward direction and the backward direction
at the same time to improve the expression ability of the network,
so it is applied to the forecasting model in this paper.

(2) This paper gives full play to the potential feature extraction
advantages of CNN model and provides a large amount of
effective input data for Bi-LSTM model. It overcomes the
defect that a single Bi-LSTM model cannot effectively mine the
hidden information between discontinuous data. The simulation
results show that compared with the model without CNN feature
extraction, which effectively improves the prediction accuracy.

(3) In order to reduce the complexity of load series and further
improve the accuracy of short-term load forecasting, this paper
uses the advantages of VMD in processing non-stationary and
nonlinear signals, and uses BES algorithm to optimize VMD
parameters. The load series is decomposed into components
with different frequencies, and a CNN-Bi-LSTM forecasting
model is established for each component. The simulation
results show that compared with the model without signal
decomposition, which effectively improves the forecasting
accuracy.

(4) An error correction model considering short-term factors is
established, which reduces the inherent error of the prediction
model by mining the effective information hidden in the error.
The simulation results show that compared with the forecasting
method without error correction, the VMD-CNN-Bi-LSTM-EC
combined forecasting model can further improve the accuracy of
short-term load forecasting. The proposed method has better
forecasting ability and stability and several application values
as follows: 1) It can provide theoretical guidance for power
production departments and management departments to
formulate production plans and development plans, and
determine the power supply quantity and production plans of
each power supply area. 2) It can improve the accuracy of power
system short-term load forecasting, and further improve the
security and economy of power system operation.

The load forecasting feature set established in the proposed
method does not considering the diversified load types, and does
not include electricity price factors, other meteorological factors, etc.
Therefore, in the future work, this paper will further study the impact
of load characteristic classification on load forecasting, build a richer
feature set including electricity price factors and other meteorological
factors such as humidity, wind speed, precipitation, air pressure, etc.,
explore the internal relationship of input characteristics, and further
improve the accuracy of short-term load forecasting. At the same time,
the forecasting model needs to be optimized to shorten the prediction
time and improve the real-time performance.
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