28 research outputs found

    Establishment of a clonal immortalized human mesenchymal stem cell line expressing hTERT using lentiviral gene transfer

    Get PDF
    Ziel: 1)Etablierung einer immortalisierten hMSC-Zelllinie durch lentivirale hTERT-Transduktion. 2)Untersuchung der biologischen Effekt einer lentiviralen Transduktion von hTERT auf hMSCs. 3)AufklĂ€rung des Transformationspotenyials von hTERT-transduzierten hMSCs. Material und Methoden: hMSCs wurden mit Lentiviren, die hTERT enthieten, transduziert. Konale hMSCs-hTERT wurden durch Isolation einzelner Zellen gewonnen. Die Expression von hTERT wurde mittels RT-PCR bestĂ€tigt. Die Zellproliferation wurde durch morphologische Beobachtung und Berechnung der “population doubling level”(PDL) und “population doubling time”(PDT) ĂŒberwacht. Die Verhinderung der Seneszenz durch hTERT-Transduktion wurde durch Seneszenz-assoziierte ÎČ-gal-FĂ€rbung bestĂ€tigt. Dabei dienten nicht-transduziert hMSCs als Kontrollen. Der Stammzellcharakter von hMSC-hTERT wurde durch adipogene, chondrogene und osteogene Differenzierung ĂŒberprĂŒft. Zur Untersuchung der potenziellen tumorösen Transformation von lentiviral transduzierten hMSCs wurden Karyotypisierung und FISH-Analyse durchgefĂŒhrt. Des Weiteren wurde der zeitliche Verlauf der Tumorsuppressor-Gene-Expression von RB1,TP53 und p21 untersucht, ein in vitro Softagar-Assay und in vivo NacktmĂ€usen Klonale und heterogene hMSCs-hTERT implantiert. Ergebnisse: hTERT wurde erfolgreich in hMSCs transduziert und “single-cell-picking”-Klone(SCP) konnten etabliert werden. In der RT-PCR wurde die hTERT-Expression bestĂ€tigt. Nicht-transduzierte hMSCs zeigten keine hTERT-Expression. Sowohl klonale, als auch heterogene hTERT-transduzierte hMSCs konnten ĂŒber mehr als 500 Tage Kultiviert werden, wĂ€hrend nicht-transduzierte hMSCs nach weniger als 250 Tagen seneszent wurden. Drei Phasen des Wachstums mit unterschiedlichen PDL und PDT konnten in hMSCs-hTERT beobachtet werden. Die Zellmorphologie der hMSCs-hTERT verĂ€nderte sich von einem gemischten PhĂ€notyp in der “initialen Phase”(PDT 2,3 bis 5,5, PDL 20,7 bis 27,1) zu einem vermehrten Auftreten von flachen Zellen in der “Plateau-Phase” (PDT 9,2 bis 22,1, PDL 30,6 bis 48,2). Dies war ganz im zeitlichen Einklang mit dem Alterungsprozess von nicht transduzierten hMSCs. In der letzten und andauernden Phase zeigte sich eine hohe Anzahl von schnell wachsenden, kleinen und spindelförmigen Zellen (PDT von 2,1 bis 6,1, PDL 53,7 bis 105,6), welche aus einem Selbstselecktionierungsprozess in einer kontinuierlichen in-vitro Kultur hervorgegangen waren. Die erhaltene Differenzieungs-KapazitĂ€t der hTERT-transduzierten hMSCs wurde sowohl fĂŒr klonale als auch heterogene hMSCs-hTERT durch eine positive Adipogenese-spezifische Oil-red-O-FĂ€rbung, Chondrogenese-spezifische Toluidinblau-FĂ€rbung und Osteogenese-spezifische von-Kossa-FĂ€rbung bestĂ€tigt. Zur Untersuchung einer potentiellen malignen Transformation der hMSCs-hTERT wurde eine Karyotyp-Analyse durchgefĂŒhrt, die keine AuffĂ€lligkeiten zeigte. DarĂŒber hinaus konnte eine unverĂ€nderte RB1, TP53 und p21 Tumorsuppressor-Gen-Expression nachgewiesen werden. Als Hinweis auf eine erhaltene Kontaktinhibition zeigten sich im Softagar-Assay keine Kolonien. Nach subkutaner Implantation der Zellen im Nacktmaus-Modell zeigte sich histologisch in vivo keine Tumorformation. Fazit: Zusammenfassend konnte mit dieser Arbeit erstmals gezeigt werden, dass eine lentivirale Transduktion von hMSCs mit hTERT eine effiziente und relative sichere Methode zur Erzeugung immortalisierter hMSCs ist. Obwohl es notwedig ist die DifferenzierungskapazitĂ€t und onkogene Potenzial fĂŒr einen noch lĂ€ngeren Zeitraum zu untersuchen, konnte nach mehr als 500 tage in Zellkultur nachgewiesen werden, dass klonal expandierte lentivital hTERT-transduzierte hMSCs eine viel versprechende Zelllinie fĂŒr die Forschung, aber möglicherweise auch fĂŒr therapeutische Anwendungen zum Beispiel im Bereich “Tissue engineering” sein könnte

    Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells

    Get PDF
    Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional structures with desirable geometries. Moreover, their application in tissue engineering and regenerative medicine has been so far limited to excitable cells such as neurons and muscle cells. To enable their wider adoption in tissue engineering and regenerative medicine, new materials and formulations that overcome current limitations are required. Herein, a biodegradable conductive block copolymer, tetraaniline-b-polycaprolactone-b-tetraaniline (TPT), is synthesised and 3D printed for the first time into porous scaffolds with defined geometries. Inks are formulated by combining TPT with PCL in solutions which are then directly 3D printed to generate porous scaffolds. TPT and PCL are both biodegradable. The combination of TPT with PCL increases the flexibility of the hybrid material compared to pure TPT, which is critical for applications that need mechanical robustness of the scaffolds. The highest TPT content shows the lowest tensile failure strain. Moreover, the absorption of a cell adhesion-promoting protein (fibronectin) and chondrogenic differentiation of chondroprogenitor cells are found to be dependent on the amount of TPT in the blends. Higher content of TPT in the blends increases both fibronectin adsorption and chondrogenic differentiation, though the highest concentration of TPT in the blends is limited by its solubility in the ink. Despite the contradicting effects of TPT concentration on flexibility and chondrogenic differentiation, a concentration that strikes a balance between the two factors is still available. It is worth noting that the effect on chondrogenic differentiation is found in scaffolds without external electric stimulation. Our work demonstrates the possibility of 3D printing flexible conductive and biodegradable scaffolds and their potential use in cartilage tissue regeneration, and opens up future opportunities in using electric stimulation to control chondrogenesis in these scaffolds

    Treating and Preventing Influenza in Aged Care Facilities: A Cluster Randomised Controlled Trial

    Get PDF
    PMCID: PMC3474842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Lentivirus-TAZ Administration Alleviates Osteoporotic Phenotypes in the Femoral Neck of Ovariectomized Rats

    No full text
    Background: Osteoporosis is characterized by impairment of bone mass, strength, and microarchitecture, leading to the susceptibility to fragility fractures, especially in femoral neck region. Transcriptional coactivator with PDZ-binding motif (TAZ) facilitates osteogenesis while suppressing adipogenesis via regulation of transcriptional activities of runt-related transcription factor 2 and peroxisome proliferator-activated receptor γ. Here, we validated the role of TAZ in vivo using an ovariectomized (OVX) rat model of osteoporosis. Methods: Serum alkaline phosphatase, triglyceride, cholesterol and urinary hydroxyproline were measured on an automatic analyzer using diagnostic reagent kits. Serum OCN and C-terminal cross-linked telopeptides of type I collagen were measured using ELISA. Bone mineral density was measured using dual-energy X-ray scanner. Mechanical parameters were detected by three-point bending assays. Bone volume per tissue volume (BV/TV), trabecular thickness (Tb. Th), trabecular number (Tb. No), and trabecular separation (Tb. Sp) were measured by MicroCT. The mRNA and protein levels were quantified by Realtime PCR and Western Blotting respectively. Results: After injections of lentivirus overexpressing TAZ into the femoral neck region, bone mineral density, ultimate force, stiffness, BV/TV, Tb. Th, and Tb. No were significantly increased, whereas Tb. Sp was dramatically decreased. In the TAZ-overexpression region in the femoral neck of OVX rats, the mRNA levels of Runx2 and osteocalcin were obviously elevated, whereas that of PPARγ and adipocyte protein 2 were downregulated. Conclusion: Lentivirus-mediated TAZ gene therapy alleviated the osteoporotic phenotypes in the femoral neck of OVX rats, providing an alternative strategy for the treatment of postmenopausal osteoporosis and prevention of osteoporotic fracture

    Epigallocatechin gallate (EGCG) can epigenetically regulate the receptor of advanced glycation end products (RAGE) to ameliorate Osteoarthritis

    No full text
    Epigallocatechin-3-O-gallate is natural phytochemical of green tea. RAGE upregulation promotes osteoarthritis (OA) progression. Herein, we revealed that EGCG can repress RAGE expression epigenetically to ameliorate OA. Firstly we found that RAGE expression was dose-dependently reduced by EGCG on chondrocyte cell C28/I2. EGCG also suppressed RAGE in human primary OA chondrocytes, and accordingly attenuated ROS production and NF-Îșb activity. Osteoarthritic microenvironment was also improved by EGCG, which was reflected by the enhanced chondrogenic markers and reduced inflammatory markers. EGCG-induced ameliorations were counteracted by artificial overexpression of RAGE. Additionally, EGCG modulates RAGE expression not only by its antioxidant activity, but also by facilitating RAGE promoter hypermethylation. To confirm this epigenetic modification, we employed dCAS9-Tet1 against EGCG’s epigenetic regulation. RAGE level was correspondingly rescued after EGCG-induced hypermethylation status were blocked. These findings support therapeutic roles of EGCG on OA and uncover the novel molecular mechanism of EGCG-mediated RAGE modulation

    Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-ÎșB pathway

    No full text
    Abstract Background Cartilage degradation is the significant pathological process in osteoarthritis (OA). Inflammatory cytokines, such as interleukin-1ÎČ (IL-1ÎČ), activate various downstream mediators contributing to OA pathology. Recently, stem cell-based cartilage repair emerges as a potential therapeutic strategy that being widely studied, whereas, the outcome is still far from clinical application. In this study, we focused on an anti-inflammatory agent, honokiol, which is isolated from an herb, investigated the potential effects on human umbilical cord derived mesenchymal stem cells (hUC-MSCs) in IL-1ÎČ stimulation. Methods Second passage hUC-MSCs were cultured for multi-differentiation. Flow cytometry, qRT-PCR, von Kossa stain, alcian blue stain and oil red O stain were used for characterization and multi-differentiation determination. Honokiol (5, 10, 25, 50 ΌM) and IL-1ÎČ (10 ng/ml) were applied in hUC-MSCs during chondrogenesis. Analysis was performed by MTT, cell apoptosis evaluation, ELISA assay, qRT-PCR and western blot. Results hUC-MSC was positive for CD73, CD90 and CD105, but lack of CD34 and CD45. Remarkable osteogenesis, chondrogenesis and adipogenesis were detected in hUC-MSCs. IL-1ÎČ enhanced cell apoptosis and necrosis and activated the expression of caspase-3, cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and matrix metalloproteinase (MMP)-1, −9, 13 in hUC-MSCs. Moreover, the expression of SRY-related high-mobility group box 9 (SOX-9), aggrecan and col2α1 was suppressed. Honokiol relieved these negative impacts induced by IL-1ÎČ and suppressed Nuclear factor-ÎșB (NF-ÎșB) pathway by downregulating expression of p-IKKα/ÎČ, p-IÎșBα and p-p65 in dose-dependent and time-dependent manner. Conclusions Honokiol improved cell survival and chondrogenesis of hUC-MSCs and inhibited IL-1ÎČ-induced inflammatory response, which suggested that combination of anti-inflammation and stem cell can be a novel strategy for better cartilage repair

    Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing

    Full text link
    Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full‐thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) using a H2O2/HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self‐healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full‐thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full‐thickness skin repair.A series of hydrogel dressings with multifunctions including adhesive hemostatic antioxidative conductive photothermal antibacterial property based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) with a H2O2/HPR (horseradish peroxidase) system is prepared and the high promotion repair effect for full‐thickness skin wound regeneration confirms their great potential for clinical application.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148370/1/smll201900046.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148370/2/smll201900046-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148370/3/smll201900046_am.pd

    Effects of Naringin on Proliferation and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells In Vitro and In Vivo

    Get PDF
    This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 ΌM naringin performs the best effect and a collection of bone-related genes (RUNX2, COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 ΌM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo

    In vitrocartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    No full text
    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell–BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100–500 ”m) than in cortical BMG (5–15 ”m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering
    corecore