5,991 research outputs found

    Topological phase transition based on the attractive Hubbard model

    Full text link
    We theoretically investigate the effect of an attractive on-site interaction on the two-band magnetic Dirac fermion model based on a square lattice system. When the attractive fermion interaction is taken into account by the mean-field approximation, a phase diagram is obtained. It is found that a quantum phase transition from a band insulator state to quantum anomalous Hall state occurs with increased attractive interaction. For an existing quantum anomalous Hall state, the attractive interaction enlarges its nontrivial band gap and makes the topological edge states more localized, which protects the transport of linear-dispersive edge states against finite-size and further disorder effects.Comment: 5 pages, 4 figure

    Pedestrian dynamics in single-file movement of crowd with different age compositions

    Get PDF
    An aging population is bringing new challenges to the management of escape routes and facility design in many countries. This paper investigates pedestrian movement properties of crowd with different age compositions. Three pedestrian groups are considered: young student group, old people group and mixed group. It is found that traffic jams occur more frequently in mixed group due to the great differences of mobilities and self-adaptive abilities among pedestrians. The jams propagate backward with a velocity 0.4 m/s for global density around 1.75 m-1 and 0.3 m/s for higher than 2.3 m-1. The fundamental diagrams of the three groups are obviously different from each other and cannot be unified into one diagram by direct non-dimensionalization. Unlike previous studies, three linear regimes in mixed group but only two regimes in young student group are observed in the headway-velocity relation, which is also verified in the fundamental diagram. Different ages and mobilities of pedestrians in a crowd cause the heterogeneity of system and influence the properties of pedestrian dynamics significantly. It indicates that the density is not the only factor leading to jams in pedestrian traffic. The composition of crowd has to be considered in understanding pedestrian dynamics and facility design.Comment: 11 pages, 13 figures, 3 table

    Fractal Metamaterial Absorber with Three-Order Oblique Cross Dipole Slot Structure and its Application for In-band RCS Reduction of Array Antennas

    Get PDF
    To miniaturize the perfect metamaterial absorber, a fractal three-order oblique cross dipole slot structure is proposed and investigated in this paper. The fractal perfect metamaterial absorber (FPMA) consists of two metallic layers separated by a lossy dielectric substrate. The top layer etched a three-order oblique fractal-shaped cross dipole slot set in a square patch and the bottom one is a solid metal. The parametric study is performed for providing practical design guidelines. A prototype with a thickness of 0.0106λ (λ is the wavelength at 3.18 GHz) of the FPMA was designed, fabricated, measured, and is loaded on a 1×10 guidewave slot array antennas to reduce the in-band radar cross section (RCS) based on their surface current distribution. Experiments are carried out to verify the simulation results, and the experimental results show that the absorption at normal incidence is above 90% from 3.17 to 3.22GHz, the size for the absorber is 0.1λ×0.1λ, the three-order FPMA is miniaturized 60% compared with the zero-order ones, and the array antennas significantly obtain the RCS reduction without the radiation deterioration

    Dynamical generation of dark solitons in spin-orbit-coupled Bose-Einstein condensates

    Get PDF
    We numerically investigate the ground state, the Raman-driving dynamics and the nonlinear excitations of a realized spin-orbit-coupled Bose-Einstein condensate in a one-dimensional harmonic trap. Depending on the Raman coupling and the interatomic interactions, three ground-state phases are identified: stripe, plane wave and zero-momentum phases. A narrow parameter regime with coexistence of stripe and zero-momentum or plane wave phases in real space is found. Several sweep progresses across different phases by driving the Raman coupling linearly in time is simulated and the non-equilibrium dynamics of the system in these sweeps are studied. We find kinds of nonlinear excitations, with the particular dark solitons excited in the sweep from the stripe phase to the plane wave or zero-momentum phase within the trap. Moreover, the number and the stability of the dark solitons can be controlled in the driving, which provide a direct and easy way to generate dark solitons and study their dynamics and interaction properties.Comment: 10 pages, 9 figur
    • …
    corecore