11,474 research outputs found

    Detecting fractional Josephson effect through 4π4\pi phase slip

    Full text link
    Fractional Josephson effect is a unique character of Majorana Fermions in topological superconductor system. This effect is very difficult to detect experimentally because of the disturbance of quasiparticle poisoning and unwanted couplings in the superconductor. Here, we propose a scheme to probe fractional DC Josephson effect of semiconductor nanowire-based topological Josephson junction through 4{\pi} phase slip. By exploiting a topological RF SQUID system we find that the dominant contribution for Josephson coupling comes from the interaction of Majorana Fermions, resulting the resonant tunneling with 4{\pi} phase slip. Our calculations with experimentally reachable parameters show that the time scale for detecting the phase slip is two orders of magnitude shorter than the poisoning time of nonequilibrium quasiparticles. Additionally, with a reasonable nanowire length the 4{\pi} phase slip could overwhelm the topological trivial 2{\pi} phase slip. Our work is meaningful for exploring the effect of modest quantum fluctuations of the phase of the superconductor on the topological system, and provide a new method for quantum information processing.Comment: 5 pages, 3 figure

    Detecting fractional Josephson effect through 4π4\pi phase slip

    Full text link
    Fractional Josephson effect is a unique character of Majorana Fermions in topological superconductor system. This effect is very difficult to detect experimentally because of the disturbance of quasiparticle poisoning and unwanted couplings in the superconductor. Here, we propose a scheme to probe fractional DC Josephson effect of semiconductor nanowire-based topological Josephson junction through 4{\pi} phase slip. By exploiting a topological RF SQUID system we find that the dominant contribution for Josephson coupling comes from the interaction of Majorana Fermions, resulting the resonant tunneling with 4{\pi} phase slip. Our calculations with experimentally reachable parameters show that the time scale for detecting the phase slip is two orders of magnitude shorter than the poisoning time of nonequilibrium quasiparticles. Additionally, with a reasonable nanowire length the 4{\pi} phase slip could overwhelm the topological trivial 2{\pi} phase slip. Our work is meaningful for exploring the effect of modest quantum fluctuations of the phase of the superconductor on the topological system, and provide a new method for quantum information processing.Comment: 5 pages, 3 figure

    On Reinforcement Learning for Full-length Game of StarCraft

    Full text link
    StarCraft II poses a grand challenge for reinforcement learning. The main difficulties of it include huge state and action space and a long-time horizon. In this paper, we investigate a hierarchical reinforcement learning approach for StarCraft II. The hierarchy involves two levels of abstraction. One is the macro-action automatically extracted from expert's trajectories, which reduces the action space in an order of magnitude yet remains effective. The other is a two-layer hierarchical architecture which is modular and easy to scale, enabling a curriculum transferring from simpler tasks to more complex tasks. The reinforcement training algorithm for this architecture is also investigated. On a 64x64 map and using restrictive units, we achieve a winning rate of more than 99\% against the difficulty level-1 built-in AI. Through the curriculum transfer learning algorithm and a mixture of combat model, we can achieve over 93\% winning rate of Protoss against the most difficult non-cheating built-in AI (level-7) of Terran, training within two days using a single machine with only 48 CPU cores and 8 K40 GPUs. It also shows strong generalization performance, when tested against never seen opponents including cheating levels built-in AI and all levels of Zerg and Protoss built-in AI. We hope this study could shed some light on the future research of large-scale reinforcement learning.Comment: Appeared in AAAI 201

    Theoretical analysis of direct CPCP violation and differential decay width in D±π±π+πD^\pm\to \pi^\pm \pi^+\pi^- in phase space around the resonances ρ0(770)\rho^0(770) and f0(500)f_0(500)

    Get PDF
    We perform a theoretical study on direct CPCP violation in D±π±π+πD^\pm\to \pi^\pm \pi^+\pi^- in phase space around the intermediate states ρ0(770)\rho^0(770) and f0(500)f_0(500). The possible interference between the amplitudes corresponding to the two resonances is taken into account, and the relative strong phase of the two amplitudes is treated as a free parameter. Our analysis shows that by properly chosen the strong phase, both the CPCP violation strength and differential decay width accommodate to the experimental results.Comment: 15 pages, 5 figure

    An apparent positive relation between spin and orbital angular momentum in X-ray binaries

    Full text link
    The origin of current angular momentum (AM) of the black hole (BH) in X-ray binary (XRB) is still unclear, which is related with the birth and/or the growth of the BH. Here we collect the spin parameters aa_{*} measured in BH XRBs and find an apparent bimodal distribution centered at \sim 0.17 and 0.83. We find a positive relation between the spin parameter and the orbital period/orbital separation through combining distinct XRB categories, including neutron star (NS) low-mass X-ray binaries (LMXBs), Roche-lobe overflow (RLOF) BH XRBs and wind-fed BH XRBs. It seems that the AM of the compact star and the binary orbit correlates by combining the different XRB systems. These positive relations imply that accretion process is a common mechanism for spinning up the compact star in these diverse XRB systems. We infer that the low and high spin BH XRBs may experience different evolution and accretion history, which corresponds to the bimodal distribution of the BH spin parameters. The low spin BHs (a<0.3a_{*}<0.3) are similar to the NS LMXBs, the compact star of which is spun-up by the low-level accretion, and the high spin BHs (a>0.5a_{*}>0.5) had experienced a short hypercritical accretion (M˙Edd\gg \dot{M}_\mathrm{Edd}) period, during which, the BH spin dramatically increased.Comment: 13 pages, 7 figures, accepted for publication in MNRA
    corecore