1,762 research outputs found

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Tagging Scientific Publications using Wikipedia and Natural Language Processing Tools. Comparison on the ArXiv Dataset

    Full text link
    In this work, we compare two simple methods of tagging scientific publications with labels reflecting their content. As a first source of labels Wikipedia is employed, second label set is constructed from the noun phrases occurring in the analyzed corpus. We examine the statistical properties and the effectiveness of both approaches on the dataset consisting of abstracts from 0.7 million of scientific documents deposited in the ArXiv preprint collection. We believe that obtained tags can be later on applied as useful document features in various machine learning tasks (document similarity, clustering, topic modelling, etc.)

    Literature review and analysis of the development of health outcomes assessment instruments in Chinese medicine

    Full text link
    OBJECTIVE: To evaluate the development of health outcomes assessment instruments in Chinese medicine. METHODS: A comprehensive literature search for all published articles in China National Knowledge Infrastructure Database, Chongqing VIP Database and WANFANG Data was conducted. The studies that met the inclusion and exclusion criteria were used to extract information according to a predesigned assessment instrument. RESULTS: A total of 97 instruments for health outcome assessment in Chinese medicine were identified. Of these questionnaires, 7 were generic, 12 were condition-specific and 78 were disease-specific. All instruments were suitable for adults, children, and both men and women. These instruments aimed to evaluate the health-related quality of life, signs and symptoms as well as patient satisfaction and doctor-reported outcome. However, the descriptions were poorly constructed for some of the most basic parameters, such as the domains and items, administrative mode, response options, memory recall periods, burden evaluation, format, copyright, content validity, and other properties. CONCLUSION: The instrument development for health outcomes assessment in Chinese medicine is increasing rapidly; however, there are many limitations in current methodologies and standards, and further studies are needed. © 2013 Feng-bin Liu et al

    10Be和26Ai揭示的合黎山西南部侵蚀速率初步研究

    Get PDF
    地表侵蚀速率是衡量地貌演化的一个重要因子。本研究利用原地宇宙成因核素 10Be 和 26Al 对合黎山西南部地表岩石侵蚀速率进行了首次测定。结果显示:约 30 ka 以来,合黎山西南部的地表岩石侵速率约为 24 mm∙ka-1。这一结果与已见报道的其他基岩侵蚀速率值一致。这一结果与 Small et al 获得的非干旱地区的基岩侵蚀速率也基本一致,但是显著高于干旱的南极地区和半干旱的澳大利亚。10Be 和26Al 获得的侵蚀速率的良好一致性表明本研究中所用侵蚀模式的有效性。所得的侵蚀速率小于 Palumbo et al 测定的合黎山平均流域侵蚀速率(99 mm∙ka-1),原因解释尚待更多地点和样品的研究。<br style="line-height: normal; text-align: -webkit-auto; text-size-adjust: auto;" /

    A probabilistic approach to evaluate the seismic loss of metro tunnels in Shanghai City

    Get PDF
    Copyright © 2023 The Author(s). Tunnels are crucial lifeline components in the mega cities. This work studies the direct seismic cost of metro tunnels subjected to earthquake events. The degree of tunnel damage and the corresponding direct seismic loss is derived considering various tunnel burial depths. The developed framework is then applied in the metro tunnels located in Shanghai city, China. Specifically, the direct seismic loss of one tunnel ring and the whole Metro Line 10 under different hazard scenario is estimated. Results highlight the significant function of tunnel buried depths towards more efficient seismic loss assessment. The findings of this study constitute useful elements in seismic loss management in terms of lifeline resilience.National Natural Science Foundation of China (Grant No. 52108381, 52090082), Shanghai Science and Technology Committee Program (Grant No. 21DZ1200601, 20DZ1201404), and China Postdoctoral Science Foundation (Grant No. 2022T150484, 2021M702491

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid

    Get PDF
    Coaxial electrospraying was explored to organize polymer excipients in a core-shell manner for providing biphasic controlled release of active ingredient. With ferulic acid (FA) as a model drug, and shellac and polyvinylpyrrolidone (PVP) as the core and shell polymeric matrices, core-shell nanoparticles were successfully fabricated. A series of tests were carried out to characterize the prepared core-shell nanoparticles and also the nanoparticles prepared using a single fluid electrospraying of the shell or core fluids alone. The core-shell nanoparticles had an average diameter of 530 ± 80 nm with clear core-shell structure. The contained FA was converted to an amorphous state both in the core and the shell parts due to the favorable hydrogen bonding between the components. In vitro dissolution tests demonstrated that the core-shell nanoparticles were able to provide the desired biphasic drug-controlled release profiles. Coaxial electrospraying is a useful tool for the development of novel nanodrug delivery systems from polymers

    GdxSi grown with mass-analyzed low energy dual ion beam epitaxy technique

    Get PDF
    Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved

    Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques

    Get PDF
    Xue-Song Xiong,1,2,&ast; Xue-Di Zhang,3,&ast; Jia-Wei Yan,3 Ting-Ting Huang,1,2 Zhan-Zhong Liu,4 Zheng-Kang Li,5 Liang Wang,5 Fen Li1,2 1Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China; 2Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China; 3Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China; 4Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China; 5Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China&ast;These authors contributed equally to this workCorrespondence: Liang Wang; Fen Li, Email [email protected]; [email protected]: Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication. Keywords: MTB, antibiotic resistance, Raman spectroscopy, rapid detectio
    corecore