208 research outputs found

    Essential role of liquid phase on melt-processed GdBCO single-grain superconductors

    Full text link
    RE-Ba-Cu-O (RE denotes rare earth elements) single-grain superconductors have garnered considerable attention owning to their ability to trap strong magnetic field and self-stability for maglev. Here, we employed a modified melt-growth method by adding liquid source (LS) to provide a liquid rich environment during crystal growth. It further enables a significantly low maximum processing temperature (Tmax) even approaching peritectic decomposition temperature. This method was referred as the liquid source rich low Tmax (LS+LTmax) growth method which combines the advantage of Top Seeded Infiltration Growth (TSIG) into Top Seeded Melt-texture Growth (TSMG). The LS+LTmax method synergistically regulates the perfect appearance and high superconducting performance in REBCO single grains. The complementary role of liquid source and low Tmax on the crystallization has been carefully investigated. Microstructure analysis demonstrates that the LS+LTmax processed GdBCO single grains show clear advantages of uniform distribution of RE3+ ions as well as RE211 particles. The inhibition of Gd211 coarsening leads to improved pining properties. GdBCO single-grain superconductors with diameter of 18 mm and 25 mm show maximum trapped magnetic field of 0.746 T and 1.140 T at 77 K. These trapped fields are significantly higher than those of conventional TSMG samples. Particularly, at grain boundaries with reduced RE211 density superior flux pinning performance has been observed. It indicates the existence of multiple pinning mechanisms at these areas. The presented strategy provides essential LS+LTmax technology for processing high performance single-grain superconductors with improved reliability which is considered important for engineering applications

    A seismic prediction method of reservoir brittleness based on mineral composition and pore structure

    Get PDF
    The Lucaogou Formation, a typical fine-grained mixed formation in the Jimusaer Sag of the Junggar Basin, exhibits considerable potential for hydrocarbon exploration. Accurate brittle prediction is a crucial factor in determining hydraulic fracturing effectiveness. However, the area features complex lithological characteristics, including carbonate rocks, clastic rocks, volcanic rocks, and gypsum interbeds, along with thin layering and sporadic sweet spots. Traditional prediction methods offer limited resolution and there is an urgent need for a seismic brittle prediction method tailored to this complex geological environment. This paper presents a multi-mineral composition equivalent model for complex lithologies that enables the accurate calculation of Vp and Vs These ratios serve as the foundation for pre-stack elastic parameter predictions, which include Poisson’s ratio and Young’s modulus. By comparing the predicted parameters with well-logging measurements, the prediction accuracy is improved to 82%, with particularly high conformity in intervals characterized by high organic matter and clay content. Additionally, a three-dimensional brittle modeling approach reveals that the brittleness of the reservoir exceeds that of the surrounding rock, showing a gradual improvement in brittleness with increasing burial depth from southeast to northwest. The central area exhibits relatively good brittleness, with a stable, blocky distribution pattern

    Riemannian Surface on Carbon Anodes Enables Li-Ion Storage at −35 °C

    Get PDF
    Since sluggish Li+^{+} desolvation leads to severe capacity degradation of carbon anodes at subzero temperatures, it is urgently desired to modulate electron configurations of surface carbon atoms toward high capacity for Li-ion batteries. Herein, a carbon-based anode material (O-DF) was strategically synthesized to construct the Riemannian surface with a positive curvature, which exhibits a high reversible capacity of 624 mAh g−1^{-1} with an 85.9% capacity retention at 0.1 A g−1^{-1} as the temperature drops to −20 °C. Even if the temperature drops to −35 °C, the reversible capacity is still effectively retained at 160 mAh g−1^{-1} after 200 cycles. Various characterizations and theoretical calculations reveal that the Riemannian surface effectively tunes the low-temperature sluggish Li+^{+} desolvation of the interfacial chemistry via locally accumulated charges of non-coplanar spx^{x} (2 < x < 3) hybridized orbitals to reduce the rate-determining step of the energy barrier for the charge-transfer process. Ex-situ measurements further confirm that the spx^{x}-hybridized orbitals of the pentagonal defect sites should denote more negative charges to solvated Li+^{+} adsorbed on the Riemannian surface to form stronger Li–C coordinate bonds for Li+^{+} desolvation, which not only enhances Li-adsorption on the curved surface but also results in more Li+^{+} insertion in an extremely cold environment

    Ocular biological parameters and prevalence of myopia in vocational high school and general high school in China

    Get PDF
    SignificanceHigher prevalence of myopia is possibly associated with more extended schooling schedules. Therefore, adjustments to high school curricula may aid in reducing the prevalence of myopia among adolescents.PurposeTo investigate the prevalence of myopia among 15- to 18-year-old adolescents in Tianjin, China, and to evaluate the impact of different educational schedules on the prevalence of myopia among high school students.MethodsThis is a school-based epidemiological study with a cross-sectional design. Ocular biological parameters and noncycloplegic photorefraction were examined using optical biometry devices and photoscreener devices. Each student’s spherical equivalent (SE) and ocular biometry were recorded, and the prevalence of myopia was calculated.ResultsA total of 2,867 participants (1,519 males and 1,348 females) were tested for non-cycloplegic refraction, axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD) and lens thickness (LT). In this research, the overall prevalence of myopia was 81.6%, with high myopia accounting for 11.8%. Myopia prevalence was substantially higher in general high schools than in vocational high schools, with 86.1 and 70.1%, respectively. There were no significant differences in the prevalence of myopia (p = 0.744) or high myopia (p = 0.851) across the three vocational school years. In the general high school, however, there was an increase of 4.6% (p &lt; 0.05) in myopia prevalence between year 10 and year12.ConclusionComparing vocational and standard high school students, there are considerable disparities in prevalence of myopia, spherical equivalent, and ocular biological parameters. The prevalence of myopia and high myopia increased among standard high school students, but remained relatively consistent among students in vocational schools

    Two-Dimensional Platinum Telluride with Ordered Te Vacancy Superlattice for Efficient and Robust Hydrogen Evolution

    Full text link
    Defect engineering to activate the basal planes of transition metal dichalcogenides (TMDs) is critical for the development of TMD-based electrocatalysts as the chemical inertness of basal planes restrict their potential applications in hydrogen evolution reaction (HER). Here, we report the synthesis and evaluation of few-layer (7x7)-PtTe2-x with an ordered, well-defined and high-density Te vacancy superlattice. Compared with pristine PtTe2, (2x2)-PtTe2-x and Pt(111), (7x7)-PtTe2-x exhibits superior HER activities in both acidic and alkaline electrolytes due to its rich structures of undercoordinated Pt sites. Furthermore, the (7x7)-PtTe2-x sample features outstanding catalytic stability even compared to the state-of-the-art Pt/C catalyst. Theoretical calculations reveal that the interactions between various undercoordinated Pt sites due to proximity effect can provide superior undercoordinated Pt sites for hydrogen adsorption and water dissociation. This work will enrich the understanding of the relationship between defect structures and electrocatalytic activities and provide a promising route to develop efficient Pt-based TMD electrocatalysts
    • …
    corecore