16,760 research outputs found

    Correlation effects in the electronic structure of the Ni-based superconducting KNi2S2

    Get PDF
    published_or_final_versio

    An Integrated Road Construction and Resource Planning Approach to the Evacuation of Victims From Single Source to Multiple Destinations

    Get PDF
    This paper presents our study on the emergency resource-planning problem, particularly on the development of a new approach to resource planning through contraflow techniques with consideration of the repair of damaged infrastructures. The contraflow technique is aimed at reversing traffic flows in one or more inbound lanes of a divided highway for the outbound direction. As opposed to the current literature, our approach has the following salient points: (1) simultaneous consideration of contraflow and repair of repair of roads; (2) classification of victims in terms of their problems and urgency in sending them to a safe place or place to be treated; and (3) consideration of multiple destinations for victims. A simulated experiment is also described by comparing our approach with some variations of our approach. The experimental results show that our approach can lead to a reduction in evacuation time by more than 50%, as opposed to the original resource operation on the damaged transportation network, and by about 20%, as opposed to the approach with resource replanning (only) on the damaged network. In addition, the multiobjective optimization algorithm to solve our model can be generalized to other network resource-planning problems under infrastructure damage

    Evacuation Planning Based on the Contraflow Technique With Consideration of Evacuation Priorities and Traffic Setup Time

    Get PDF
    Evacuation planning with the contraflow technique is a complex planning problem. The problem is further complicated when more realistic situations such as evacuation priorities and the setup time for the contraflow operation are considered. Such a complex problem has yet to be discussed in the present literature. In this paper, we present a multipleobjective optimization model for this problem and a two-layer algorithm to solve this model. Experiments on three transportation networks with different network scales are presented to show the excellent performance of the proposed model and algorithm.published_or_final_versio

    Secretin facilitates GABA transmission in the cerebellum

    Get PDF
    Secretin was the first hormone discovered in human history, and yet, its function as a neuropeptide has been overlooked in the past. The recent discovery of the potential use of secretin in treating autistic patients, together with the conflicting reports on its effectiveness, urges an in-depth investigation of this issue. We show here that in the rat cerebellar cortex, mRNAs encoding secretin are localized in the Purkinje cells, whereas those of its receptor are found in both Purkinje cells and GABAergic interneurons. Immunoreactivity for secretin is localized in the soma and dendrites of Purkinje cells. In addition, secretin facilitates evoked, spontaneous, and miniature IPSCs recorded from Purkinje cells. We propose that secretin is released from the somatodendritic region of Purkinje cells and serves as a retrograde messenger modulating GABAergic afferent activity.published_or_final_versio

    On domain modelling of the service system with its application to enterprise information systems

    Get PDF
    Information systems are a kind of service systems and they are throughout every element of a modern industrial and business system, much like blood in our body. Types of information systems are heterogeneous because of extreme uncertainty in changes in modern industrial and business systems. To effectively manage information systems, modelling of the work domain (or domain) of information systems is necessary. In this paper, a domain modelling framework for the service system is proposed and its application to the enterprise information system is outlined. The framework is defined based on application of a general domain modelling tool called function-context-behaviour-principle-state-structure (FCBPSS). The FCBPSS is based on a set of core concepts, namely: function, context, behaviour, principle, state and structure and system decomposition. Different from many other applications of FCBPSS in systems engineering, the FCBPSS is applied to both infrastructure and substance systems, which is novel and effective to modelling of service systems including enterprise information systems. It is to be noted that domain modelling of systems (e.g. enterprise information systems) is a key to integration of heterogeneous systems and to coping with unanticipated situations facing to systems.postprin

    Transport and adsorption of antibiotics by marine sediments in a dynamic environment

    Get PDF
    Author name used in this publication: Weihai H. XuAuthor name used in this publication: Onyx W. H. WaiAuthor name used in this publication: Shichun C. ZouAuthor name used in this publication: Xiangdong D. Li2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Optimum Water Quality Monitoring Network Design for Bidirectional River Systems

    Get PDF
    Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM) is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time

    Quantifying Rapid Variability in Accreting Compact Objects

    Get PDF
    I discuss some practical aspects of the analysis of millisecond time variability X-ray data obtained from accreting neutron stars and black holes. First I give an account of the statistical methods that are at present commonly applied in this field. These are mostly based on Fourier techniques. To a large extent these methods work well: they give astronomers the answers they need. Then I discuss a number of statistical questions that astronomers don't really know how to solve properly and that statisticians may have ideas about. These questions have to do with the highest and the lowest frequency ranges accessible in the Fourier analysis: how do you determine the shortest time scale present in the variability, how do you measure steep low-frequency noise. The point is stressed that in order for any method that resolves these issues to become popular, it is necessary to retain the capabilities the current methods already have in quantifying the complex, concurrent variability processes characteristic of accreting neutron stars and black holes.Comment: To be published in the Proceedings of "Statistical Challenges in Modern Astronomy II", University Park PA, USA, June 199

    Macroscopic invisibility cloaking of visible light

    Get PDF
    Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices
    corecore