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Materials and methods A Lid-driven Elongated Annular Flume (LEAF), designed to reduce 23 

the centrifugal effect, was used to simulate a dynamic water environment. In addition, a 24 

quiescent water/sediment experiment was conducted for comparison with the dynamic water 25 

system. The seawater and sediment, used in both experiments of flowing and quiescent 26 

water/sediment systems, were collected from Victoria Harbour, a dynamic coastal 27 

environment in an urban setting. The four antibiotics selected in this study were ofloxacin 28 
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Abstract   13 

Background, aim, and scope Bed-sediments are the major sink for many contaminants in 14 

aquatic environments. With increasing knowledge of and research on the environmental 15 

occurrence of antibiotics, there has been growing interest in their behaviour and fate in 16 

aquatic environments. However, there is little information about the behaviour of antibiotics 17 

in a dynamic water/sediment environment, such as river and coastal marine water. Therefore, 18 

the aims of the present study were: (1) to study the transport and distribution of four common 19 

antibiotics between water and sediment in both dynamic and quiescent water/sediment 20 

systems; (2) to understand the persistence and possible degradation of the four antibiotics in 21 

the two different systems.  22 
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(OFL), roxithromycin (RTM), erythromycin (ETM), and sulfamethoxazole (SMZ), the most 29 

commonly used antibiotics in south China. 30 

Results and discussion Antibiotics in an overlying solution decreased very quickly in the 31 

flume system due to the sorption to suspended particles and surface sediment. There were 32 

significant differences in the adsorption of the four antibiotics in sediment. OFL showed a 33 

high tendency to be adsorbed by sediment with a high Kd value (2980 L/Kg), while the low 34 

Kd values of SMZ indicated that there was a large quantity in water. The four antibiotics 35 

reached a depth of 20–30 mm in the sediment over a period of 60 days in the flume system. 36 

However, the compounds were only found in surface sediment (above 10 mm) in the 37 

quiescent system, indicating the influence of the dynamic flume system on the distribution of 38 

antibiotics in sediment. OFL showed a moderate persistence in the dynamic flume system, 39 

while other three antibiotics had less persistence in sediment. However, all of the four 40 

compounds showed moderate persistence in the quiescent system. 41 

Recommendations and perspectives The study showed the rapid diffusive transfer of 42 

antibiotics from water to sediment in the dynamic flume system. The four antibiotics 43 

exhibited larger differences in their adsorption to sediment in both dynamic and quiescent 44 

systems due to their different Kd values. The high sorption of antibiotics to marine sediment 45 

may reduce their availability to benthic invertebrates.  46 

Keywords: Antibiotics ∙ transport ∙adsorption ∙ persistence ∙ sediments∙ dynamic water 47 

environment ∙ South China. 48 

 49 

1 Background, aim, and scope  50 

The occurrence and potential adverse effects of pharmaceutical residuals in aquatic 51 

environments have generated growing interest in recent years due to their potential threat to 52 

the balance of the ecosystem and the risk they pose to the health of humans and animals. 53 

Antibiotics rank among the most important classes of pharmaceuticals because of the large 54 

amounts used in medicines for humans and animals, and in aquaculture.  55 
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One of the major pathways of antibiotics to the aquatic environment is via municipal 56 

sewage treatment plants (STPs). The removal of antibiotics by STPs has been shown to be 57 

incomplete (Miao et al. 2002; Xu et al. 2007b), and the effects on antibiotics and 58 

antibiotic-resistant bacteria during the wastewater treatment process is largely unknown. 59 

Various groups of antibiotics and some of their metabolites have been detected in the 60 

effluents from municipal STPs (Golet et al. 2003; Ternes et al. 2002). It is known that, as a 61 

result, considerable quantities of antibiotics enter surface water environments, such as river 62 

water and sediments (Golet et al. 2001; Hirsch et al. 1999; Lindberg et al. 2004; Sacher et al. 63 

2001; Xu et al. 2007a), and coastal water and groundwater (Daughton and Ternes 1999; 64 

Heberer 2002; Ternes 1998). 65 

With increasing knowledge of the environmental occurrence of antibiotics, interest is now 66 

being focused on their behaviour and fate in the environment (Brannon et al. 2005). For 67 

example, exposure to antibiotics might induce resistance (Kummerer 2004), and lead to the 68 

horizontal transfer of resistance genes in field bacterial populations (Dantas et al. 2008; 69 

Davison 1999; Pruden et al. 2006). Once introduced into surface waters, antibiotics may also 70 

undergo biodegradation and adsorption to sediment. Aquatic sediment is the most important 71 

sink of pharmaceutics and other contaminants. The distribution of a particular compound 72 

between sediment/suspended particulate matter and water is largely dependent on the 73 

lipophilicity of the compound and on the sorption properties of the sediment. In order to 74 

investigate the distribution kinetics between water and sediment, and the environmental fate 75 

of contaminants, many test systems have been established under a variety of relevant 76 

environmental conditions (Freitag et al. 1985; Freitag et al. 1982; Suzuki et al. 1998). One 77 
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drawback of most of these systems is that they are based on the quiescent system. Hence, 78 

these systems cannot provide high comparability and reproducibility with dynamic water 79 

systems under real environmental conditions (Sabaliunas et al. 2003). Experimental flumes 80 

with sediment and an overlying solution have proven to be good at mimicking these dynamic 81 

riverine and coastal environments (Allan et al. 2004; Chan and Wai 2004; Wai 2003). So far, 82 

very little work has been conducted on the transport and distribution of antibiotics in dynamic 83 

water environments, such as the discharge points of wastewater effluents in riverbanks and 84 

coastal zones.  85 

China has the largest population in the world, and antibiotics are in very common use, with 86 

the annual consumption being over 25,000 tonnes (Kummerer 2003; Xu et al. 2007a). The use 87 

of antibiotics in the fast-developing Pearl River Delta (PRD) region of south China is 88 

especially high (Richardson et al. 2005). The four antibiotics selected in the current study are 89 

representative of three classes of antibiotics that are commonly used in the PRD region. They 90 

have been detected in the Pearl River and other coastal waters in the PRD region at maximum 91 

concentrations of up to 1000 ng/L (Gulkowska et al. 2007; Xu et al. 2007a). The objectives of 92 

this study were: (1) to investigate the distribution of four common antibiotics between water 93 

and sediment in both dynamic and quiescent water/sediment systems; (2) to study the vertical 94 

distribution of antibiotics in 50-mm-bed sediment layers in the flume system, and to compare 95 

it with that in a quiescent system; (3) to understand the persistence and degradation of the four 96 

antibiotics in the two water systems.  97 

 98 

2 Materials and methods  99 
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2.1 Collecting sediment and seawater 100 

Seawater and sediment were collected from Hong Kong’s Victoria Harbour in March 2006. 101 

The seawater was transported to the laboratory in 50-litre plastic containers. Sediment was 102 

obtained from a depth of < 10 cm in the harbour. Stones, branches, and other solid materials 103 

in the sediment were carefully removed, and the sediment was then thoroughly mixed before 104 

being introduced into the flume and quiescent systems. The characteristics of the seawater and 105 

sediment are shown in Table 1.  106 

2.2 Methods 107 

2.2.1 Dynamic water/sediment system 108 

  A Lid-driven Elongated Annular Flume (LEAF), designed to reduce the centrifugal effect, 109 

was used to perform the dynamic water experiment (Fig. 1). The flume has two identical 3-m 110 

long straight sections, which are meant to create a uniform flow environment. The inner side 111 

of the flume is made of glass in order to reduce the sorption of antibiotics. The depth of the 112 

water and vertical position of the lid can be adjusted. The lid is driven by an adjustable-speed 113 

motor. The water is re-circulated using the butterfly lid controlled by an electromotor. An 114 

ultrasonic velocity monitor was installed in the straight sections of the flume.                 115 

The flume was housed in a large laboratory, with the temperature of the room kept at 20±2 ℃. 116 

About 60 mm of sediment were laid evenly at the bottom of the flume, and 400 litres of 117 

seawater were then slowly added to the flume. The flume was kept running for a week with a 118 

lid rotational speed (RS) of 0.6 m/s (the water velocity was about 20 cm/s) before antibiotics 119 

were added to the water. Then, 16 mg of each of the four selected antibiotics were dissolved 120 

and spiked into the flume system. Following this, the flume started to work at a water velocity 121 
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of 20 cm/s and the run ended after 60 days. At each sampling period, one litre of surface 122 

seawater (3 cm below the surface) and bottom seawater (3 cm above the sediment), as well as 123 

sediment in the middle of the straight sections of the flume, were collected. After each 124 

sampling programme, two litres of seawater were added to compensate for what had been lost 125 

due to water sampling. Ultra-pure water was also added to keep the volume of the water 126 

constant every day. At the end of the experiment (60 days later), after the overlying seawater 127 

had been cautiously removed, the sediment in the straight section was longitudinally 128 

sectioned at 5-mm intervals down to 20 mm below the sediment–water interface, then 10 mm 129 

down to 30 mm.  130 

2.2.2 Quiescent water/sediment system 131 

A quiescent water/sediment system was designed using a tank in order to compare the 132 

results with the environmental fate of antibiotics in the dynamic flume channel. About 60 mm 133 

of sediment were laid evenly at the bottom, before 40 litres of seawater were added to the tank. 134 

The antibiotics were added as they had been in the flume experiments. Surface seawater and 135 

sediment samples were collected at each sampling period. Appropriate amounts of seawater 136 

and ultra-pure water were added to keep constant the volume of the water in the system. 137 

2.2.3 Extraction and analysis of antibiotics 138 

Seawater samples: The extraction of antibiotics from the seawater samples was performed 139 

mainly using the method described by Xu et al. (2007a), based on solid phase extraction 140 

(SPE).  141 

Sediment samples: Samples of approximately 5 g were accurately weighed (200 142 

ng 13C3-caffeine being added as a surrogate) and then placed into a 50-ml polypropylene 143 
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centrifuge tube into which 10 ml of extraction buffer had been added. The extraction buffer 144 

consisted of a 2:1:1 mixture of methanol, 0.1 M of a citric acid buffer with the pH adjusted to 145 

6.0, and a 10 mM Na2EDTA buffer with the pH adjusted to 6.0. The tubes were vortex mixed 146 

for 1 min and were then placed into an ultrasonic bath for 15 min (water temperature ＜40℃). 147 

The tubes were then centrifuged (Eppendorf Centrifuge 5810 R) for 10 min at 3000×g. The 148 

supernatant was decanted into a 500 ml glass bottle and the sediment residue was extracted 149 

one more time. The supernatant was combined and diluted to approximately 500 ml with 150 

ultra-pure water. SAX-HLB SPE cartridges were set up in tandem, and pre-conditioned 151 

sequentially with 6.0 ml of methanol, 6.0 ml of ultra-pure water, and 6.0 ml of a 10 mM 152 

Na2EDTA buffer (pH 6.0). The samples were then passed through the SPE cartridges and 153 

SPE columns at a flow rate of approximately 5 ml/min. After this, the SAX cartridges were 154 

removed and the HLB cartridges washed with ultra-pure water (10 ml) before being dried 155 

with a flow of nitrogen gas for 1 h. Each cartridge was then eluted with three 2-ml vol of 156 

methanol. The analytes were collected in 10 ml brown glass vials, concentrated under a flow 157 

of N2

The four antibiotics were analysed using high-performance liquid 160 

chromatography-electrospray ionization tandem mass spectrometry. A quantitative analysis of 161 

each compound was performed using LC-ESI-MS/MS with the MRM mode, using the two 162 

highest characteristic precursor ion/product ion transitions. Together with the retention times, 163 

the characteristic ions were used to ensure correct peak assignment and peak 164 

purity. 

 gas to about 20 μl, and then dissolved in 40% aqueous methanol to a final volume of 158 

1.0 ml.  159 

13C3-caffeine was added as a surrogate standard to all samples prior to the enrichment 165 
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of the control to avoid possible losses during the analytical procedure. These spiked 166 

antibiotics in seawater and sediment were recovered at mean percentages ranging from 68% 167 

to 87% and from 65% to 72%, respectively. The limit of quantification (LOQ) for each 168 

compound in seawater and sediment are from 1 to 10 ng/L and 10 to 50 ng/g, respectively. 169 

 170 

3 Results and discussion  171 

3.1 Hydrodynamic characteristics of the LEAF 172 

To check the uniformity of the flow field in the LEAF, a Preston tube was used to measure 173 

bed shear stress in the straight section of the flume. The stress was calculated according to the 174 

equations described in a previous study (Patel 1965). It was found that the lid rotational speed 175 

(RS) had a quadratic relationship with the flow velocity and the bottom shear stress. Fig. 2 176 

shows the relationship of RS with the flow velocity and shear stress. The maximum bed shear 177 

stress that the LEAF could generate was around 1 N/m2. Therefore, rather broad energy 178 

ranges (induced by shear stress from 0 to 1 N/m2) can be obtained through the LEAF, with 179 

these energy levels considered to be typical of near bottom shear stresses induced by a tide or 180 

flowing river water (Bokuniewicz et al. 1991). In this study, the RS was set up at 0.6 m/s. 181 

Thus, the induced bed shear stress and water velocity were about 0.1 N/m2 and 20 cm/s, 182 

respectively. According to Chan and Wai (2004), the energy level induced in our experimental 183 

conditions (0.1 N/m2) was below the critical shear stress of typical non-cohesive sediment 184 

(0.15 N/m2). Wai (2003) showed that the concentration of sediment (turbidity signal) 185 

increased and decreased in response to changes in the flow field in the LEAF. This indicated 186 

that the flume that was used was indeed suitable for the study of the erosion and deposition 187 
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activities of sediment near the sediment-water interface. In addition, the LEAF was also 188 

suitable for carrying out long-term chemical-sediment sorption experiments because it had a 189 

well-controlled environment, and was made of non-reactive materials.  190 

3.2 Sediment adsorption of antibiotics in both dynamic and quiescent environments    191 

The changes over time in the concentration of antibiotics in the overlying seawater, 192 

including the surface and bottom seawater and sediment, in the dynamic flume system are 193 

shown in Fig. 3. The original spiked concentrations of the four antibiotics in the flume were 194 

40 µg/L. However, the concentrations in seawater of all four antibiotics, detected at the first 195 

sampling event (30 min), were much lower than the initial spiked concentrations because of 196 

the rapid sorption to suspended particles and sediment. The antibiotic concentrations in the 197 

original seawater were mainly close to or lower than LOQ, and those in sediment were all 198 

below LOQ (see Table 1). Hence, the concentrations of the original antibiotics in water and 199 

sediment were much lower than the spiked concentrations, and need not be a cause of concern. 200 

Concentration profiles in the overlying water suggested that the diffusive transfer of 201 

antibiotics into sediment was a quick process, with the compounds generally detected in 202 

surface sediment at a maximum concentration of more than 3000 ng/g at a very short 203 

sampling interval. Since the antibiotics were spiked into the seawater, their degradation, 204 

especially photodegradation, in the water phase was a competitive process between the 205 

sorption to sediment and a chemical transformation. It is often difficult to distinguish between 206 

sorption and degradation in a natural environment. However, the photodegradation function 207 

can be evaluated in this system based on previous studies under certain controlled conditions. 208 

The half-life times of OFL and AMX (amoxicillin) in a solution of water were 2.4 and 10.6 d, 209 
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respectively in a solar experiment (Andreozzi et al. 2003), and 7.0-17 d for ETM in sludge 210 

(Wu et al. 2008). Generally, the intensity of sunlight is about 50 times greater than the light 211 

emitted by common fluorescent lamps. In addition, the relatively low temperature in the 212 

laboratory may affect the reactivity of antibiotics with radicals formed by photons 213 

(Yamamoto et al. 2009). Together with the shielding from the apparatus, the 214 

photodegradation rates of the antibiotics in this experiment would certainly be greatly reduced. 215 

In a river environment biodegradation would occur at a less rapid rate than would be the case 216 

in photodegradation (Kummerer 2001; Yamamoto et al. 2009). Therefore, the quick changes 217 

in the concentrations of antibiotics in the overlying water at the initial sampling times (i.e., the 218 

first 10 days) were mainly due to sediment adsorption. 219 

The concentrations in sediment reached several hundred ng/g at the first sampling event. 220 

This suggests that a water velocity of 20 cm/s can mobilize the small particles in the surface 221 

sediment so that the antibiotic compounds can be adsorbed rapidly to suspended particles, and 222 

then to surface sediment. It can be seen from Table 1 that the small particles (clay content) in 223 

suspended matter increased from 28.4% to 34.7% in comparison with the level in bulk 224 

sediment. On the contrary, the sand content decreased from 12.4% to 1.1%. The adsorption 225 

capacity of suspended particles is strongly related to their size, with larger particles providing 226 

additional surfaces for sorption (Clymo et al. 2005; Pouliquen and LeBris 1996; Thiele-Bruhn 227 

et al. 2004). An X-ray diffraction analysis of clay showed that the sorption of antibiotics can 228 

widen the interlayer spacing of clay. Hence, an increase in the content of clay can lead to an 229 

increase in adsorption capacity (Pouliquen and LeBris 1996). This rapid and extensive 230 

sorption of antibiotics into sediment, which had previously been reported for marine 231 

javascript:showjdsw('jd_t','j_')�
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sediments (Cannavan et al. 2000; Loffler et al. 2005), is mainly attributable to the 232 

lipophilicity of these compounds. The concentrations of antibiotics in the water of the 233 

quiescent environment at the first sampling event were much higher than those in the flume 234 

(see Fig. 4). Correspondingly, the concentrations of antibiotics in sediment were lower than 235 

those in the flume system at the same sampling event due to the lack of dynamic interaction 236 

between water and sediment.  237 

In both the flume and quiescent systems, large discrepancies were seen in the adsorption to 238 

sediment of the four antibiotics. The highest concentrations of 3730 ng/g and 1880 ng/g of 239 

OFL in water were detected in the flume and quiescent systems, respectively. However, the 240 

concentrations of SMZ were only 1036 ng/g and 629 ng/g, respectively. The adsorption of 241 

OFL into sediment was particularly strong, while the adsorption of SMZ was found to be 242 

weak. Similar findings were found in previous studies (Drillia et al. 2005; Sukul et al. 2008). 243 

 3.3 Vertical profiles of antibiotics in sediments 244 

In the flume system, the concentrations of the four selected antibiotics were found to be 245 

highest at the top layer of sediment, and to decrease sharply with depth (Fig. 5). At the end of 246 

the experiment, OFL persisted with a residual concentration of 542 ng/g in the top layer (0-5 247 

mm), while the respective figures were 434 ng/g for RTM, 393 ng/g for ETM, and 55 ng/g for 248 

SMZ. The results revealed a pattern of diffusive distribution of the selected antibiotics into 249 

the sediment, due to the dynamic interaction between water and sediments in the flume 250 

system. A different pattern was seen in the quiescent system. Except for approximately 20 251 

ng/g of OFL, no antibiotics were detected below 10 mm in the sediment profile. Allan et al. 252 

investigated the diffusion of the synthetic pyrethroid permethrin into sediment using flume 253 
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channels (Allan et al. 2005). Their results clearly showed that a large quantity of permethrin 254 

accumulated in the top layer (0-3 mm). Little permethrin was found in the sediment at a depth 255 

of 3 mm below the sediment-water interface. In our work, a high water velocity certainly 256 

affected the normal diffuse boundary layer, which may have resulted in mass transfers and 257 

increased the overall fluxes of antibiotics into the sediment. On the whole, the concentrations 258 

of antibiotics decreased by about one hundred ng/g for every 5 mm in the sediment profile to 259 

a depth of 25 mm, with the exception of the SMZ. No SMZ was found in the sediment at a 260 

depth below 15 mm, probably due to its low distribution coefficient and fast degradation rate 261 

(Holtge and Kreuzig 2007; Wu et al. 2009).  262 

3.4 Effects of adsorption/desorption between seawater and sediment 263 

The functions of the adsorption/desorption of antibiotics between water and sediment are 264 

rather complex. The distribution coefficient (Kd) and the normalized distribution coefficient 265 

(Koc) with respect to the organic content (OC) (%) of the solid matrix have often been used to 266 

describe the effects of adsorption between water and sediment. Kd and Koc were calculated 267 

according to: 268 

Kd = Cs/Caq 269 

Koc = 100 Kd

where C

/OC, 270 

s is the antibiotics equilibrium concentration in a solid matrix, and Caq is the 271 

equilibrium concentration in an aqueous solution. In the present study, the Kd and Koc values 272 

were determined using the concentrations of antibiotics in water and solid after 1 d or later, 273 

and should therefore be close to equilibrium conditions. That no degradation took place 274 

before 1 d was also taken into account. It is known that pharmaceuticals display a wide range 275 
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of mobility (0.2<Kd<6000 L/Kg), and that the variations in Kd for a given compound in 276 

different soils and sediments can be significant (Tolls 2001). In the present study, the Kd and 277 

Koc values of each antibiotic did indeed vary significantly (Table 2). The values of Kd and 278 

Koc decreased in the following order: OFL>RTM>ETM>SMZ. The adsorption of all 279 

compounds was generally higher in sediments with a higher total organic content (TOC) 280 

(Drillia et al. 2005). Hence, it is believed that the high sorption capacity (high Kd) to marine 281 

sediment may reduce the availability of antibiotics to benthic invertebrates. The calculated 282 

values showed that OFL has a high tendency to be adsorbed by sediment or solid particles, 283 

while SMZ, with a pKa value of 1.69, has a low affinity for sediment. Studies have shown that 284 

the interaction of antibiotics with Ca2+ at clay surfaces is the prevalent sorption mechanism at 285 

low pH levels (Nowara et al. 1997). However, in neutral and weak alkaline pH conditions, 286 

this mechanism cannot play a leading role in the interaction of antibiotics with solids. This 287 

indicates that the interaction of deprotonated carboxylic acid with a clay surface can 288 

contribute significantly to the sorption of fluoroquinoloes antibiotics (Nowara et al. 1997). An 289 

X-ray diffraction analysis of clay showed that the sorption of antibiotics can widen the clay 290 

interlayer spacing. Hence, due to the high clay content of the marine sediment in this study, 291 

the mechanism for the fluoroquinoloes may be through cation bridging in the diffuse double 292 

layer at the surfaces of the clay. The possible sorption mechanism for the fluoroquinoloes 293 

agrees with the high Kd obtained in previous studies (Tolls 2001). It has been suggested that 294 

electrochemical affinity and hydrophobic interaction can play important roles in the sorption 295 

of macrolides and sulfonamides to sediment/soil (Liu et al. 2002; Pan et al. 2009; Yamamoto 296 

et al. 2009). 297 
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The fate and mobility of six pharmaceuticals, including ofloxacin and sulfamethoxazole, 298 

were investigated in two types of soils with different values of TOC (Drillia et al. 2005). 299 

Ofloxacin had the highest Kd among the six pharmaceuticals. The values of Kd decreased in 300 

the following order: ofloxacin > propranolol > diclofenac > carbamazepine > 301 

sulfamethoxazole > clofibric acid. The details of the Kd and Koc of the ofloxacin (OFL) and 302 

the sulfamethoxazole (SMZ) are also given in Table 2. It should be noted that the Kd and Koc 303 

values in the present study were obtained under dynamic flume conditions similar to those of 304 

a subtropical river or coastal environment. Therefore, the Kd and Koc

The degradation rate, often expressed as DT

 values may be different 305 

from those obtained in a steady water/sediment system. 306 

3.5 The persistence and fate of antibiotics in dynamic and quiescent environments 307 

Antibiotics are designed to have a biological effect, and can persist in the human or animal 308 

body after administration. For easy absorption, most antibiotics are made to be water-soluble. 309 

These chemicals can degrade in the body more easily than in the environment. The 310 

persistence of antibiotics in the aquatic environment is a rather complex process, governed by 311 

biodegradation, sunlight photolysis, and other abiotic transformations, such as hydrolysis. 312 

Many antibiotics are relatively resistant to degradation under environmental conditions and 313 

pass through the STP treatment process (Putschew et al. 2001; Ternes 1998; Ternes and 314 

Hirsch 2000). At the end of the LEAF experiment (after 60 d), the final average 315 

concentrations of the four antibiotics in the surface water and sediment ranged from 0.26-1.27 316 

µg/L and 36-461 ng/g, respectively.   317 

50 and DT90 (the time at which 50% and 90% 318 

of the parent compound has disappeared from sediment or water by transformation or 319 
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degradation, respectively), has been used to characterize the degradation of pharmaceuticals. 320 

Table 3 shows the degradation rate (DT50 and DT90) of the four antibiotics in the human body, 321 

in the flume system, and in the quiescent system. The DT50 values generally varied from 322 

several hours to a day in the human body. However, in the flume environment, the maximum 323 

DT50 values in seawater and sediment exceeded 10 days. Thus, the transformation of the 324 

selected antibiotics in the human body is very different from that in the environment. Hence, 325 

appropriate experimental studies and field observations are indispensable for obtaining 326 

reliable data to assess the environmental fate of antibiotics. Great differences in the DT50 327 

values of OFL and SMZ were found in the water and sediment samples due to the different 328 

degradation rates and partitioning process between water and sediment. The expectation is 329 

that OFL is adsorbed relatively quickly by solid matrices in the environment. As for SMZ, it 330 

is likely that a large amount stays in water.  331 

The DT50 values, together with the DT90 values, are often used to show the persistence of 332 

antibiotics in the environment because the single DT50 value cannot exactly describe the rate 333 

of degradation. With the exception of SMZ, the DT90 values of the other three compounds (> 334 

60 d) in sediment were longer than the values in water. Many antibiotic compounds 335 

photodegrade in liquids (Halling-Sorensen et al. 2003). In addition, photodegradation in 336 

sediment can only occur at the surface interface and in the first millimeters of depth. The 337 

chemical removal of antibiotics from sediments is done mainly through scouring or diffusion 338 

processes across the sediment-water interface. The persistence of antibiotics in sediment has 339 

become an important concern in the context of their long-term accumulation in aquatic 340 

environments (Williams et al. 1999). 341 
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According to the method described by Hollis (Hollis 1991), with regard to their persistence 342 

in sediment, antibiotics can be grouped into the following four classes: impersistent - DT50 < 343 

5 d; slightly persistent - DT50 5-21 d; moderately persistent - DT50 22-60 d; and very 344 

persistent - DT50 > 60 d. By this classification, OFL was moderately persistent and the other 345 

three compounds were impersistent. However, in the quiescent system, the DT50 values 346 

ranged from 12.9 to 29 d, and from 24.3 to 41.1 d in seawater and sediment, respectively. The 347 

DT90 

The dynamic environment that we simulated gave some insight into the environmental 352 

behaviours of antibiotic compounds when they are introduced into aquatic environments. The 353 

results showed that the diffusive transfer of antibiotic into sediment was a quick process in the 354 

flume system. The four antibiotics exhibited larger differences in their adsorption to sediment 355 

in both dynamic and quiescent systems due to their different K

values were all >60 d for both seawater and sediment. Therefore, all four antibiotics 348 

displayed moderately persistent behaviour in the quiescent system. 349 

 350 

4 Conclusions  351 

d values. With a high Kd value, 356 

OFL showed a high tendency to be adsorbed by sediment, while the low Kd value of SMZ 357 

indicated that a large quantity would remain in water. The experiments revealed that their 358 

high sorption capacity (high Kd) to marine sediment may reduce the availability of antibiotics 359 

to benthic invertebrates. In the flume system, the four antibiotics reached sediment layers of 360 

20–30 mm over a period of 60 days. However, in the quiescent system the compounds were 361 

only found in surface sediment (above 10 mm). In the quiescent water system, the four 362 

compounds displayed moderate persistence, with DT50 values ranging from 24.3 to 41.1 d., 363 
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and DT90 values of ≥ 60 d for most of the compounds. In the dynamic flume system, OFL 364 

displayed a moderate persistence, with DT50 values of ≥22 d in sediment, while the other 365 

three antibiotics displayed impersistence. Furthermore, the experiment indicated that 366 

antibiotics can resist degradation, with low concentrations persisting in sediment.  367 
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Table 1 Information about bulk seawater and sediment 545 

Type 
Organic 
content 

Grain size (%) Concentration of antibiotics (ng/L) 
Sand Silt Clay OFL RTM ETM SMZ 

Bulk 
Seawater 

2.62 µg/ml Not available 10 6 
＜

LOQ
＜LOQ b 

Bulk 
Sediment 

0.88 % 12.36 59.22 28.42 ＜LOQ ＜LOQ ＜LOQ ＜LOQ 

Suspended 
particulate 

matter
1.13 % 

a 
1.14 64.21 34.65 Not available 

a Suspended particulate matter was collected during the running of the flume for a week, before 546 
being spiked with antibiotics. 547 
b 

576 

The LOQs for OFL, RTM, ETM, and SMZ were 10, 5, 5, and 1 ng/L, and 50, 20, 20, and 10 ng/g 548 
in seawater and marine sediment, respectively. 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
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 577 
Table 2 The Kd and Koc 

Antibiotics 

values of four selected antibiotics 578 
Kd K(L/Kg) 

This study (mean)  
oc 

References This study References 
OFL 2982 1192~4525a 447300   50056~1104595
RTM 

a 
1420 470 213000 b - 

ETM 337 165 50550 c - 
SMZ 89 0.23~43.1 13350 a 62.2~607a 

a From (Drillia et al. 2005) 579 
b From (Gobel et al. 2005) 580 
c From (Jones et al. 2002) 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 
 609 
 610 
 611 
 612 
 613 
 614 
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Table 3 The DT50 and DT90

Antibiotics 

 values of the four antibiotics in seawater and sediment 615 

In the human body 
(h) 

In the flume system (d) In the quiescent system (d) 

DT DT50 DT90 DT50 DT90 DT50 
OFL 

90 
5.0~10.0 － 3.4a b (21.4) 7.5 (>60) c 12.9 (34.0) >60 (>60) 

RTM 8.4 ~15.5 － 6.7 (2.3) 30 (>60) 29 (41.1) >60 (>60) 
ETM 1.4 ~2 － 7.3 (2.1) >60 (>60) 18 (27.0) >60 (>60) 
SMZ 8.0~12.0 － 14.7 (3.1) >60 (29) 14.5 (24.3) >60 (>60) 

a Not available 616 
b In seawater  617 
c In sediment 618 
 619 
 620 
 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 
 641 
 642 
 643 
 644 
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 646 

Fig. 1 The setting of the experimental flume (LEAF) 647 
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Fig. 2 Relationship of the lid rotational speed (RS) with the averaged flow velocity (<u>) and 676 

the bed shear stress (τb) (adopted from Chan et al. 2006) 677 
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Fig. 3 Temporal changes of the four antibiotics in surface water (a), bottom water (b), and 736 

sediment (c) of the flume system 737 
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Fig. 4 Temporal changes of the four antibiotics in surface water (a) and sediment (b) of the 767 

quiescent system 768 
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Fig. 5 Concentration profiles of the four antibiotics in sediment layers of the flume system 783 
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