293,230 research outputs found

    Using Microsatellites to Assess Genetic Variation in a Selective Breeding Program of Chinese Bay Scallop (Argopecten irradians irradians)

    Get PDF
    This study aimed to improve our understanding of the genetics of the Chinese bay scallop (Argopecten irradians irradians), one of the most important maricultured shellfish in China. Ten polymorphic microsatellite loci were examined to assess the allelic diversity, heterozygosity, and genetic variation between two domesticated populations selected for fast growth in breeding programs, and their base population. Forty-one alleles were found throughout the loci and the mean number of alleles per locus ranged 3.30-3.50. The average heterozygosity ranged 0.38-0.45, whereas the polyamorphic information content ranged 0.1504-0.7518. Genetic differences between the three populations were detected based on the number of alleles per locus, effective number of alleles, Shannon index, inbreeding coefficient (Fis), p values, genetic distance, and pairwise Fst values. There was no significant loss of genetic variability in the breeding program but changes in gene frequencies were detectable over the populations, implying that thea loci were saffected by the pressures of selective culture

    Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation

    Full text link
    Random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time {\it saturation} limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for near-saturation configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. Uche, and F.~H. Stillinger, Phys. Rev. E {\bf 74}, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space using finite computational time with heretofore unattained precision and across the widest range of dimensions (2≀d≀82 \le d \le 8). We have also calculated the packing and covering densities, pair correlation function g2(r)g_2(r) and structure factor S(k)S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average Voronoi cell. Our algorithm is easily generalizable to generate saturated RSA packings of nonspherical particles

    Analogues of Auslander–Yorke theorems for multi-sensitivity

    No full text

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure

    Scaling of nuclear modification factors for hadrons and light nuclei

    Full text link
    The number of constituent quarks (NCQ-) scaling of hadrons and the number of constituent nucleons (NCN-) scaling of light nuclei are proposed for nuclear modification factors (RcpR_{cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on coalescence mechanism the scalings are performed for pions and protons in quark level, and light nuclei d(dˉ)d (\bar d) and 3^3He for nucleonic level, respectively, formed in Au + Au and Pb + Pb collisions and nice scaling behaviour emerges. NCQ or NCN scaling law of RcpR_{cp} can be respectively taken as a probe for quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions.Comment: 6 pages, 6 figure

    Hot spin spots in the laser-induced demagnetization

    Full text link
    Laser-induced femtosecond magnetism or femtomagnetism simultaneously relies on two distinctive contributions: (a) the optical dipole interaction (ODI) between a laser field and a magnetic system and (b) the spin expectation value change (SEC) between two transition states. Surprisingly, up to now, no study has taken both contributions into account simultaneously. Here we do so by introducing a new concept of the optical spin generator, a product of SEC and ODI between transition states. In ferromagnetic nickel, our first-principles calculation demonstrates that the larger the value of optical spin generator is, the larger the dynamic spin moment change is. This simple generator directly links the time-dependent spin moment change {\Delta}Mk z (t) at every crystal- momentum k point to its intrinsic electronic structure and magnetic properties. Those hot spin spots are a direct manifestation of the optical spin generator, and should be the focus of future research.Comment: 10 pages, 2 figures, [email protected]

    Analytic continuation of single-particle resonance energy and wave function in relativistic mean field theory

    Full text link
    Single-particle resonant states in spherical nuclei are studied by an analytic continuation in the coupling constant (ACCC) method within the framework of the self-consistent relativistic mean field (RMF) theory. Taking the neutron resonant state Îœ1g9/2\nu 1g_{9/2} in 60^{60}Ca as an example, we examine the analyticity of the eigenvalue and eigenfunction for the Dirac equation with respect to the coupling constant by means of a \pade approximant of the second kind. The RMF-ACCC approach is then applied to 122^{122}Zr and, for the first time, this approach is employed to investigate both the energies, widths and wave functions for l≠0l\ne 0 resonant states close to the continuum threshold. Predictions are also compared with corresponding results obtained from the scattering phase shift method.Comment: 19 pages, 9 figure
    • 

    corecore