435 research outputs found

    Treatment of DomesticWastewaterwith Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation

    Get PDF
    In order to apply microbial fuel cell (MFC) process more practically in wastewater treatment, both power generation and removal of chemical oxygen demand (COD) were examined in an air-cathode MFC fed with domestic wastewater under continuous operation. At a hydraulic retention time (HRT) of 2.0 h, the air-cathode MFC was able to generate electricity from domestic wastewater with a maximum power density of P = 103 2 mWm–2 (5772 mW m–3) and an average Coulomb efficiency (CE) of 18.4%; meanwhile, to achieve an average COD removal up to 71 %. Increasing HRT from 2h to 10–30 h was found to be more effective for COD removal, however, instability in voltage output was also observed. An increased power generation of 1734mW m–2 (9648 mW m–3) was obtained with the aid of NaCl addition at a mass fraction of w = 2.4 %, because of an elevated conductivity of the solution with accord internal resistance of 227 0

    Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion towards all normal dispersion

    Full text link
    Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated under various cavity dispersion conditions. It was shown that not only wide range soliton wavelength tuning but also soltion pulse width variation could be obtained in the fiber lasers. Our results show that the graphene mode locked erbium-doped fiber lasers provide a compact, user friendly and low cost wavelength tunable ultrahsort pulse source

    Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation

    Full text link
    Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the gas of lattice solitons (a.k.a. quodons) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be as high as the density of phonon gas. The quodon gas may be a powerful driver of the chemical reaction rates under irradiation, the strength of which exponentially increases with irradiation flux and may be comparable with strength of the phonon gas that exponentially increases with temperature. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methodsComment: V. Dubinko, R. Shapovalov, Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation. (Springer International Publishing, Switzerland, 2014

    Combining in vivo proton exchange rate (k(ex)) MRI with quantitative susceptibility mapping to further stratify the gadolinium-negative multiple sclerosis lesions

    Get PDF
    BACKGROUND: Conventional gadolinium (Gd)-enhanced MRI is currently used for stratifying the lesion activity of multiple sclerosis (MS) despite limited correlation with disability and disease activity. The stratification of MS lesion activity needs further improvement to better support clinics. PURPOSE: To investigate if the novel proton exchange rate (k(ex)) MRI combined with quantitative susceptibility mapping (QSM) may help to further stratify non-enhanced (Gd-negative) MS lesions. MATERIALS AND METHODS: From December 2017 to December 2020, clinically diagnosed relapsing-remitting MS patients who underwent MRI were consecutively enrolled in this IRB-approved retrospective study. The customized MRI protocol covered conventional T(2)-weighted, T(2)-fluid-attenuated-inversion-recovery, pre- and post-contrast T(1)-weighted imaging, and quantitative sequences, including (k(ex)) MRI based on direct-saturation removed omega plots and QSM. Each MS lesion was evaluated based on its Gd-enhancement as well as its susceptibility and (k(ex)) elevation compared to the normal appearing white matter. The difference and correlation concerning lesion characteristics and imaging contrasts were analyzed using the Mann-Whitney U test or Kruskal-Wallis test, and Spearman rank analysis with p < 0.05 considered significant. RESULTS: A total of 322 MS lesions from 30 patients were identified with 153 Gd-enhanced and 169 non-enhanced lesions. We found that the (k(ex)) elevation of all lesions significantly correlated with their susceptibility elevation (r = 0.30, p < 0.001). Within the 153 MS lesions with Gd-enhancement, ring-enhanced lesions showed higher (k(ex)) elevation than the nodular-enhanced ones' (p < 0.001). Similarly, lesions with ring-hyperintensity in QSM also had higher (k(ex)) elevation than the lesions with nodular-QSM-hyperintensity (p < 0.001). Of the 169 Gd-negative lesions, three radiological patterns were recognized according to lesion manifestations on the (k(ex)) map and QSM images: Pattern I ((k(ex))(+) and QSM(+), n = 114, 67.5%), Pattern II (only (k(ex)) or QSM(+), n = 47, 27.8%) and Pattern III ((k(ex))(-) and QSM(-), n = 8, 4.7%). Compared to Pattern II and III, Pattern I had higher (k(ex)) (p < 0.001) and susceptibility (p < 0.05) elevation. The percentage of Pattern I of each subject was negatively correlated with the disease duration (r = -0.45,P = 0.015). CONCLUSION: As a potential imaging biomarker for inflammation due to oxidative stress, in vivo (k(ex)) MRI combined with QSM is promising in extending the clinical classification of MS lesions beyond conventional Gd-enhanced MRI

    Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do

    Get PDF
    Evaporation of fluid at micro and nanometer scale may be used to self-assemble nanometre-sized particles in suspension. Evaporating process can be used to gently control flow in micro and nanofluidics, thus providing a potential mean to design a fine pattern onto a surface or to functionalize a nanoprobe tip. In this paper, we present an original experimental approach to explore this open and rather virgin domain. We use an oscillating tip at an air liquid interface with a controlled dipping depth of the tip within the range of the micrometer. Also, very small dipping depths of a few ten nanometers were achieved with multi walls carbon nanotubes glued at the tip apex. The liquid is an aqueous solution of functionalized nanoparticles diluted in water. Evaporation of water is the driving force determining the arrangement of nanoparticles on the tip. The results show various nanoparticles deposition patterns, from which the deposits can be classified in two categories. The type of deposit is shown to be strongly dependent on whether or not the triple line is pinned and of the peptide coating of the gold nanoparticle. In order to assess the classification, companion dynamical studies of nanomeniscus and related dissipation processes involved with thinning effects are presented

    Moments of the Hadronic Invariant Mass Spectrum in B --> X_c l nu Decays at Belle

    Get PDF
    We present a measurement of the hadronic invariant mass squared (M^2_X) spectrum in charmed semileptonic B meson decays B --> X_c l nu based on 140 fb^-1 of Belle data collected near the Y(4S) resonance. We determine the first, the second central and the second non-central moments of this spectrum for lepton energy thresholds ranging between 0.7 and 1.9 GeV. Full correlations between these measurements are evaluated.Comment: published version of the paper (one figure added, minor changes in the text); 16 pages, 3 figures, 10 table

    Time-Dependent CP Violation Effects in Partially Reconstructed B0DπB^0 \to D^* \pi Decays

    Full text link
    We report measurements of time-dependent decay rates for B0Dπ±B^0 \to D^{*\mp} \pi^\pm decays and extraction of CP violation parameters related to ϕ3\phi_3. We use a partial reconstruction technique, whereby signal events are identified using information only from the primary pion and the charged pion from the decay of the DD^{*\mp}. The analysis uses 140fb1140 {\rm fb}^{-1} of data accumulated at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. We measure the CP violation parameters S+=0.035±0.041(stat)±0.018(syst)S^+ = 0.035 \pm 0.041 ({\rm stat}) \pm 0.018 ({\rm syst}) and S=0.025±0.041(stat)±0.018(syst)S^- = 0.025 \pm 0.041 ({\rm stat}) \pm 0.018 ({\rm syst}).Comment: 15 pages, 5 figures. To appear in Physics Letters

    Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-kappa B signaling mediated inflammation

    Get PDF
    Macrophage-orchestrated, low-grade chronic inflammation plays a pivotal role in obesity and atherogenesis. However, the underlying regulatory mechanisms remain incompletely understood. Here, we identify major vault protein (MVP), the main component of unique cellular ribonucleoprotein particles, as a suppressor for NF-κB signaling in macrophages. Both global and myeloid-specific MVP gene knockout aggravates high-fat diet induced obesity, insulin resistance, hepatic steatosis and atherosclerosis in mice. The exacerbated metabolic disorders caused by MVP deficiency are accompanied with increased macrophage infiltration and heightened inflammatory responses in the microenvironments. In vitro studies reveal that MVP interacts with TRAF6 preventing its recruitment to IRAK1 and subsequent oligomerization and ubiquitination. Overexpression of MVP and its α-helical domain inhibits the activity of TRAF6 and suppresses macrophage inflammation. Our results demonstrate that macrophage MVP constitutes a key constraint of NF-κB signaling thereby suppressing metabolic diseases
    corecore