14,919 research outputs found

    Engagement and control of synchroniser mechanisms in dual clutch transmissions

    Full text link
    The study of synchroniser engagements in dual clutch transmissions is undertaken in this paper, identifying limitations to the repeatability of actuation, demonstrating one popular solution for positive synchroniser control and offering an alternate engagement tool. Principally, high wet clutch drag and the synchroniser design have lead to detrimental alignments conditions, where indexing chamfers on sleeve and target gear delay engagement of the mechanism and lead to potential sleeve block out. This paper focuses on the investigation of different control methods for overcoming these detrimental alignment conditions. The application of a closed loop control method to overcome block out related engagements is studied, and, for comparison, a novel engagement tool for overriding all chamfer alignment conditions is introduced and evaluated. Results have demonstrated that both techniques have some limitations, with the novel tool being capable of providing direct control of all chamfer engagements with limited extension of the duration of synchroniser engagements; however, some tuning of mechanism parameters is required for different engagement conditions. © 2011 Elsevier Ltd. All rights reserved

    Active damping of transient vibration in dual clutch transmission equipped powertrains: A comparison of conventional and hybrid electric vehicles

    Full text link
    The purpose of this paper is to investigate the active damping of automotive powertrains for the suppression of gear shift related transient vibrations. Conventionally, powertrain vibration is usually suppressed passively through the application of torsional dampers in dual clutch transmissions (DCT) and torque converters in planetary automatic transmissions (AT). This paper presents an approach for active suppression of transient responses utilising only the current sensors available in the powertrain. An active control strategy for manipulating engine or electric machine output torque post gear change via a proportional-integral-derivative (PID) controller is developed and implemented. Whilst conventional internal combustion engine (ICE) powertrains require manipulation of the engine throttle, for HEV powertrains the electric machine (EM) output torque is controlled to rapidly suppress powertrain transients. Simulations for both conventional internal combustion engine and parallel hybrid vehicles are performed to evaluate the proposed strategy. Results show that while both the conventional and hybrid powertrains are both capable of successfully suppressing undesirable transients, the EM is more successful in achieving vibration suppression. © 2014 Elsevier Ltd

    Investigation of synchroniser engagement in dual clutch transmission equipped powertrains

    Full text link
    Transient response of a dual clutch transmission (DCT) powertrain to synchroniser mechanism engagements is investigated using a lumped inertia model of the powertrain. Original research integrates lumped inertia powertrain models for the DCT with a detailed synchroniser mechanism model and two separate engine models, comprising of a mean torque model and a harmonic torque model, using torque derived from piston firing. Simulations are used to investigate the synchroniser mechanism engagement process in a previously unscrutinised operating environment. Simulations are performed using both engine torque models, with the mean torque model demonstrates the highly nonlinear nature of synchroniser mechanism engagement, and the powertrain response to the engagement process. Through the introduction of harmonic engine torques, additional excitation is present in the mechanism during engagement, and increased vibration of the synchroniser sleeve results. The impact of vibrations is particularly important to the increased wear of indexing chamfer contact surfaces. © 2011 Elsevier Ltd All rights reserved

    Parameter study of synchroniser mechanisms applied to Dual Clutch Transmissions

    Full text link
    The modelling, simulation and analysis of a synchroniser mechanism as a component of wet Dual Clutch Transmissions (DCT) is presented in this paper. Mechanism engagement is demonstrated using rigid body models with a detailed drag torque model, to establish its variation over the process. Dimensionless equivalent cone and chamfer torques are used to study the impact of drag torque from a design perspective, and parameter studies performed to verify this method. Outcomes suggest the high dependency of speed synchronisation on both cone angle and friction coefficient, while the chamfer torque are highly dependent on chamfer angle, but not friction coefficient

    Physiological responses to swimming fatigue of juvenile white-leg shrimp Litopenaeus vannamei exposed to different current velocities, temperatures and salinities

    Get PDF
    Swimming performance is one of the crucial factors determining the lifestyle and survival of Penaeid shrimps. This study examined under controlled laboratory conditions, the physiological responses to swimming fatigue of juvenile white-leg shrimp Litopenaeus vannamei (8.85 ± 0.05 cm TL) exposed to different current velocities, temperatures and salinities factors which have been correlated with their swimming performance. The swimming endurance of juveniles decreased as current velocity increasedfrom 5.41 to 11.47 cm s-1 at any of the temperatures and salinities tested. Exercise to fatigue led to severe loss of serum total protein concentration (PC) and serum glucose level (SG) in L. vannamei exposed to different current velocities, temperatures and salinities (P < 0.05). Moreover, decrease of PC and SG in fatigued shrimp varied with current velocity, temperature and salinity. The results showed that the mobilization of protein and glucose in response to swimming fatigue was rapidly diminished and suggest how physiological responses to swimming fatigue of juvenile white-leg shrimp L. vannamei exposed to different current velocity, temperature and salinity may determine their swimming performances.Key words: Litopenaeus vannamei, swimming fatigue, current velocities, temperatures, salinities

    Characterization of vitamin D supplementation and clinical outcomes in a large cohort of early Parkinson's disease.

    Get PDF
    BackgroundVitamin D (VitD) deficiency is common in Parkinson's disease (PD) and has been raised as a possible PD risk factor. In the past decade, VitD supplementation for potential prevention of age related conditions has become more common. In this study, we sought to characterize VitD supplementation in early PD and determine as an exploratory analysis whether baseline characteristics or disease progression differed according to reported VitD use.MethodsWe analyzed data from the National Institutes of Health Exploratory Trials in Parkinson's Disease (NET-PD) Long-term study (LS-1), a longitudinal study of 1741 participants. Subjects were divided into following supplement groups according to subject exposure (6 months prior to baseline and during the study): no VitD supplement, multivitamin (MVI), VitD ≥400 IU/day, and VitD + multivitamin (VitD+MVI). Clinical status was followed using the Unified Parkinson's Disease Rating Scale, Symbol Digit Modalities Test, total daily levodopa equivalent dose, and Parkinson's Disease Questionnaire.ResultsAbout 5% of subjects took VitD alone, 7% took VitD+MVI, 34% took MVI alone, while 54% took no supplement. Clinical outcomes at 3 years were similar across all groups.ConclusionThis study shows VitD supplementation ≥400 IU/day was not common in early PD and that its use was similar to that seen in the US population. At 3 years, there was no difference in disease progression according to vitamin D supplement use

    Control of gear shifts in dual clutch transmission powertrains

    Full text link
    To achieve the best possible responses during shifting in dual clutch transmissions it is commonplace to integrate clutch and engine control, while the clutch is used to match speeds between the engine and wheels via reduction gears, poor engine control can lead to extended engagement times and rough/harsh shift transients. This paper proposes a method for combined speed and torque control of vehicle powertrains with dual clutch transmissions for both the engine and clutches. The vehicle powertrain is modelled as a simple four degree of freedom system with reduction gears and two clutches. Including a detailed clutch hydraulic model, comprising of the direct acting solenoids and clutch piston with the hydraulic fluid modelled as a compressible fluid. Powertrain control is realised through control of clutch solenoids and manipulation of the engine throttle input. Sensitivity study of clutch performance evaluating inaccurate torque estimation demonstrated variance in the response of the hydraulic system, with an indicative simulation of poor estimation resulting in increased powertrain vibration during and after shifting. Simulations are conducted to demonstrate the capacity for this method of engine and clutch control to further reduce shift transients developed in dual clutch transmission powertrains. The obtained results also show that the adoption of torque based control techniques for both the clutch and engine, which makes use of the estimated target clutch torque, significantly improves the powertrain response as a result of reduction in the lockup discontinuities. © 2010 Elsevier Ltd. All rights reserved

    Development of continuously variable transmission and multi-speed dual-clutch transmission for pure electric vehicle

    Full text link
    © 2018, © The Author(s) 2018. Pure electric vehicles, as a promising alternative to conventional fossil fuel–powered passenger vehicles, provide outstanding overall energy-utilizing efficiency by omitting the internal combustion engine. However, because of lower energy density in battery energy storage, the driving range per charge is limited by this electrochemical power source, leading to a so-called range phobia and presenting a major barrier for large-scale commercialization. The widely adopted single-reduction gear in pure electric vehicles typically do not achieve the diverse range of functional needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Consequently, special-designed multi-speed pure electric vehicle–powertrains have been compared and investigated for these applications in this article. Through the optimizing of multiple gear ratios and creating special shifting strategies, a more diverse range of functional needs is realized without increasing the practical size of the electric motor and battery. This article investigates the performance improvements of pure electric vehicle realized through utilization of multi-speed dual-clutch transmissions and continuously variable transmissions. Results reveal that there can be significant benefits attained for pure electric vehicles through multi-speed transmissions. Simulation results shows that continuously variable transmission and two-speed transmission are the two most promising transmissions for pure electric vehicle in different classes, respectively
    corecore