384 research outputs found

    A new global 1-form in Lyra geometric cosmos model

    Full text link
    Dark energy phenomena has inspired lots of investigations on the cosmological constant problems. In order to understand its origin and properties as well as its impacts on universe's evolutions, there are many approaches to modify the well-known General Relativity, such as the Weyl-Lyra Geometry. In the well studied cosmology model within Lyra geometry, there is a problem that the first law of thermodynamics is violated. To unravel this issue, if we use the effective density and pressure in the Lyra cosmology model to preserve the first law of thermodynamics in the cosmos, the former 1-form (β,0,0,0)(\beta,0,0,0) cannot give a proper vacuum behavior. In this paper, the auxiliary 1-form is modified to overcome this difficulty. It can be shown that the complex terms in the field equation derived from the regime of Lyra Geometric32ϕμϕν−34δνμϕαϕα \frac{3}{2}{\phi}^{\mu}{\phi}_{\nu}-\frac{3}{4}{\delta}^{\mu}_{\nu}{\phi}^{\alpha}{\phi}_{\alpha}with our new 1-form could behave just as the cosmological constant. This work can be regarded as a new exploration on a possible origin of the cosmological constant from a Lyra cosmology model.Comment: 8 pages. Accepted for publication in IJT

    Behavioral and pharmacological validation of an integrated fear-potentiated startle and prepulse inhibition paradigm

    Get PDF
    Fear-potentiated startle (FPS) and prepulse inhibition (PPI) of acoustic startle are two widely used paradigms specifically designed to capture the impact of negative emotion (e.g. fear) and preattentive function on startle response. Currently, there is no single paradigm that incorporates both FPS and PPI, making it impossible to examine the potential interactions between fear and attention in the regulation of startle response. In this study, we developed an integrated FPS and PPI test protocol and validated it with psychoactive drugs. In Experiment 1, male Sprague-Dawley rats were randomly assigned to one of five groups, receiving either Light -Shock conditioning trials, non-overlapping Lights and Shocks, Light alone, Shock alone, or no Light and Shock. They were then tested for startle response and PPI concurrently, under the Light or No Light. FPS was observed only in rats subjected to fear conditioning, whereas all rats showed PPI and startle habituation. Experiment 2 used this paradigm and demonstrated a dissociative effect between diazepam (an anxiolytic drug) and phencyclidine (a nonselective NMDA receptor antagonist) on FPS and PPI. Diazepam suppressed both FPS and PPI, while PCP selectively disrupted PPI but not FPS. The diazepam’s anxiolytic effect on FPS was further confirmed in the elevated plus-maze test. Together, our findings indicate that our paradigm combines FPS and PPI into a single paradigm, and that is useful to examine potential interactions between multiple psychological processes, to identify the common neural substrates and to screen new drugs with multiple psychoactive effects

    Doxorubicin@Bcl-2 siRNA core@shell nanoparticles for synergistic anticancer chemotherapy

    Get PDF
    Acquired drug resistance in malignant tumors seriously hinders effective chemotherapy against cancer. The main mechanisms of drug resistance include decreased drug influx, increased drug efflux, as well as antiapoptotic defense behavior in cancerous cells. To overcome these issues, we have designed a nanomedicine composed of pure doxorubicin (DOX) as the core and B-cell lymphoma-2 (Bcl-2) siRNA as the shell for synergistic cancer treatment. Between the core and shell, polyethylene glycol (PEG) and polyethylenimine (PEI) are employed to increase the stability of the core DOX NPs and facilitate siRNA coating, respectively. In this design, the siRNA is able to inhibit the expression of Bcl-2 protein which has a role of protecting cancer cells from apoptosis. DOX not only is for anticancer therapy but also acts as a nanocarrier for Bcl-2 siRNA delivery. Our studies show that Bcl-2 siRNA and DOX are efficiently delivered into tumor cells and tumor tissues, and such a codelivery nanosystem possesses synergistic effects on tumor inhibition, enabling significantly enhanced antitumor outcome. This work demonstrates that the codelivery of tumor-suppressive Bcl-2 siRNA and chemotherapeutic agents without using an excipient material as a drug carrier represents a promising therapy for enhanced cancer therapy

    Mitochondrial-targeting Lonidamine-Doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance

    Get PDF
    Lonidamine (LND) can act on mitochondria and inhibit energy metabolism in cancer cells and therefore has been used together with chemotherapy drugs for synergistically enhanced therapeutic efficacy. However, its use is hindered by the poor solubility and slow diffusion in the cytoplasm. To address these problems, we designed and prepared aqueous dispersible nanoparticles (NPs) containing integrated components including triphenylphosphine (TPP) to target the mitochondria of cells and LND and doxorubicin (DOX) for synergistic cancer treatment and conquering drug resistance. This design allows the NPs to concentrate in the mitochondria of cells, solve the low solubility of LND, and contain very high load of LND and DOX in comparison with previously reported drug-delivery systems based on various carrier nanomaterials. Detailed mechanism studies reveal that TPP-LND-DOX NPs could induce significant reactive oxygen species production, mitochondrial membrane potential decrease, and mitochondrial apoptosis pathway, thereby leading to great cytotoxicity in cancer cells. In vivo anticancer activities indicate that TPP-LND-DOX NPs exhibit the highest efficacy in tumor inhibition among all tested groups and show high effectiveness in drug-resistant model. This work demonstrates the potential use of our TPP-LND-DOX NPs to jointly promote the mitochondria apoptosis pathway and contribute to conquer drug resistance in cancer therapy

    Observation of the Effect of Gait-induced Functional Electrical Stimulation on Stroke Patients with Foot Drop

    Get PDF
    Objective: To explore the effects of functional electrical stimulation and functional mid frequency electrical stimulation on lower limb function and balance function in stroke patients. Methods: 20 cases of stroke patients with foot drop after admission were randomly divided into the observation group and the control group, 10 cases in each group. On the basis of the two groups of patients, the observation group used the gait induced functional electrical stimulation to stimulate the peroneal nerve and the pretibial muscle in the observation group. The control group used the computer medium frequency functional electrical stimulation to stimulate the peroneal nerve and the anterior tibial muscle for 2 weeks. Before and after treatment, the lower extremity simple Fugl-Meyer scale (FMA), the Berg balance scale (BBS) and the improved Ashworth scale were evaluated respectively, and the comparative analysis was carried out in the group and between the groups. Results: After 2 weeks of treatment, the scores of FMA and BBS in the two groups were significantly higher than those before the treatment (P < 0.05), and the scores of FMA and BBS in the observation group were higher than those in the control group (P < 0.05), and the flexor muscle tension of the ankle plantar flexor muscle of the observed group was lower than that of the control group (P < 0.05). Conclusions: Exercise therapy combined with gait induced functional electrical stimulation or computer intermediate frequency functional electrical stimulation can significantly improve lower limb function and balance function in patients with ptosis, and the therapeutic effect of functional electrical stimulation combined with gait is better.
    • …
    corecore