53,334 research outputs found

    Distributed Clustering in Cognitive Radio Ad Hoc Networks Using Soft-Constraint Affinity Propagation

    Get PDF
    Absence of network infrastructure and heterogeneous spectrum availability in cognitive radio ad hoc networks (CRAHNs) necessitate the self-organization of cognitive radio users (CRs) for efficient spectrum coordination. The cluster-based structure is known to be effective in both guaranteeing system performance and reducing communication overhead in variable network environment. In this paper, we propose a distributed clustering algorithm based on soft-constraint affinity propagation message passing model (DCSCAP). Without dependence on predefined common control channel (CCC), DCSCAP relies on the distributed message passing among CRs through their available channels, making the algorithm applicable for large scale networks. Different from original soft-constraint affinity propagation algorithm, the maximal iterations of message passing is controlled to a relatively small number to accommodate to the dynamic environment of CRAHNs. Based on the accumulated evidence for clustering from the message passing process, clusters are formed with the objective of grouping the CRs with similar spectrum availability into smaller number of clusters while guaranteeing at least one CCC in each cluster. Extensive simulation results demonstrate the preference of DCSCAP compared with existing algorithms in both efficiency and robustness of the clusters

    Thermal rectification in asymmetric U-shaped graphene flakes

    Get PDF
    In this paper, we study the thermal rectification in asymmetric U-shaped graphene flakes by using nonequilibrium molecular dynamics simulations. The graphene flakes are composed by a beam and two arms. It is found that the heat flux runs preferentially from the wide arm to the narrow arm which indicates a strong rectification effect. The dependence of the rectification ratio upon the heat flux, the length and the width of the beam, the length and width of the two arms are studied. The result suggests a possible route to manage heat dissipation in U-shaped graphene based nanoelectronic devices.Comment: 3 pages, 4 figure

    Tortoise coordinate and Hawking effect in a dynamical Kerr black hole

    Full text link
    Hawking effect from a dynamical Kerr black hole is investigated using the improved Damour-Ruffini method with a new tortoise coordinate transformation. Hawking temperature of the black hole can be obtained point by point at the event horizon. It is found that Hawking temperatures of different points on the surface are different. Moreover, the temperature does not turn to zero while the dynamical black hole turns to an extreme one.Comment: 7 page

    Discussion on Event Horizon and Quantum Ergosphere of Evaporating Black Holes in a Tunnelling Framework

    Full text link
    In this paper, with the Parikh-Wilczek tunnelling framework the positions of the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are calculated respectively. We find that the event horizon and the apparent horizon of these two black holes correspond respectively to the two turning points of the Hawking radiation tunnelling barrier. That is, the quantum ergosphere coincides with the tunnelling barrier. Our calculation also implies that the Hawking radiation comes from the apparent horizon.Comment: 8 page
    • …
    corecore