300,994 research outputs found

    Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

    Get PDF
    We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion

    The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars

    Get PDF
    Adpoting new s-process nucleosynthesis scenario and branch s-process path, we calculate the heavy-element abundances and C/O ratio of solar metallicity 3M_sun TP-AGB stars. The evolutionary sequence from M to S to C stars of AGB stars is explained naturally by the calculated results. Then combining the angular momentum conservation model of wind accretion with the heavy-element abundances on the surface of TP-AGB stars, we calculate the heavy-element overabundances of barium stars via successive pulsed accreting and mixing. Our results support that the barium stars with longer orbital period, P>1600 days, form through wind accretion scenario.Comment: 14 pages, LaTex, 17 PS figures included, accepted for publication in A &

    Interacting Individuals Leading to Zipf's Law

    Full text link
    We present a general approach to explain the Zipf's law of city distribution. If the simplest interaction (pairwise) is assumed, individuals tend to form cities in agreement with the well-known statisticsComment: 4 pages 2 figure

    Optical detection of a BCS phase transition in a trapped gas of fermionic atoms

    Full text link
    Light scattering from a spin-polarized degenerate Fermi gas of trapped ultracold Li-6 atoms is studied. We find that the scattered light contains information which directly reflects the quantum pair correlation due to the formation of atomic Cooper pairs resulting from a BCS phase transition to a superfluid state. Evidence for pairing can be observed in both the space and time domains.Comment: 8 pages, 4 figures, revte

    Sensitivity of neutron to proton ratio toward the high density behavior of symmetry energy in heavy-ion collisions

    Full text link
    The symmetry energy at sub and supra-saturation densities has a great importance in understanding the exact nature of asymmetric nuclear matter as well as neutron star, but, it is poor known, especially at supra-saturation densities. We will demonstrate here that the neutron to proton ratios from different kind of fragments is able to determine the supra-saturation behavior of symmetry energy or not. For this purpose, a series of Sn isotopes are simulated at different incident energies using the Isospin Quantum Molecular Dynamics (IQMD) model with either a soft or a stiff symmetry energy for the present study. It is found that the single neutron to proton ratio from free nucleons as well as LCP's is sensitive towards the symmetry energy, incident energy as well as isospin asymmetry of the system. However, with the double neutron to proton ratio, it is true only for the free nucleons. It is possible to study the high density behavior of symmetry energy by using the neutron to proton ratio from free nucleons.Comment: 11 Pages, 9 Figure

    The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation : an in vivo and in vitro study

    Get PDF
    Protein phosphorylation is a fundamental mechanism regulating many aspects of cellular processes. Shell matrix proteins (SMPs) control crystal nucleation, polymorphism, morphology, and organization of calcium carbonate crystallites during shell formation. SMPs phosphorylation is suggested to be important in shell formation but the mechanism is largely unknown. Here, to investigate the mechanism of phosphorylation of SMPs in biomineralization, we performed in vivo and in vitro experiment. By injection of antibody against the anti-phosphoserine/threonine /tyrosine into the extrapallial fluid of the pearl oyster Pinctada fucata, phosphorylation of matrix proteins were significantly reduced after 6 days. Newly formed prismatic layers and nacre tablet were found to grow abnormally with reduced crystallinity and possibly changed crystal orientation shown by Raman spectroscopy. In addition, regeneration of shells is also inhibited in vivo. Then, protein phosphatase was used to dephosphorylate SMPs extracted from the shells. After dephosphorylation, the ability of SMPs to inhibiting calcium carbonate formation have been reduced. Surprisingly, the ability of SMPs to modulate crystal morphology have been largely compromised although phosphorylation extent remained to be at least half of the control. Furthermore, dephosphorylation of SMPs changed the distribution of protein occlusions and decreased the amount of protein occlusions inside crystals shown by confocal imaging, indicating interaction between phosphorylated SMPs and crystals. Taken together, this study provides insight into the mechanism of phosphorylation of SMPs during shell formation

    Control of the interaction in a Fermi-Bose mixture

    Full text link
    We control the interspecies interaction in a two-species atomic quantum mixture by tuning the magnetic field at a Feshbach resonance. The mixture is composed by fermionic 40K and bosonic 87Rb. We observe effects of the large attractive and repulsive interaction energy across the resonance, such as collapse or a reduced spatial overlap of the mixture, and we accurately locate the resonance position and width. Understanding and controlling instabilities in this mixture opens the way to a variety of applications, including formation of heteronuclear molecular quantum gases.Comment: 5 Page
    corecore