34 research outputs found

    Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion

    Get PDF
    Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins

    Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    Get PDF
    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion

    Advances in microbial decorations and its applications in drug delivery

    Get PDF
    Microorganisms are mostly distributed on the surface of our skin and intestines and have crucial roles in physiologic and metabolic processes, such as digestion and immunity, which are closely related to diseases. Recently, microorganisms have received great attention and have been applied in various aspects of biomedicine, especially in the field of drug delivery. However, the application of bacteria has been largely limited due to the intrinsic nature of bacteria, including rapid proliferation, toxicity, and immunogenicity. Therefore, microbial decoration is an attention-grabbing approach to drug delivery by altering the properties and functions of microbial surfaces. Microbial decoration methods are diverse and include biotin-affinity and gene decoration technologies. These approaches can improve the specific delivery of drugs, enhance the stability and controlled release of drug delivery vehicles, and are useful in cancer therapy, gene therapy, and vaccine delivery. Microbial decoration has broad application prospects by helping develop smarter and more precise drug delivery systems and providing more effective and safer therapeutic options for patients. In this review we summarize the research progress in different microbial surface modification methods and the applications in drug delivery, as well as the outlook for future opportunities in this field

    Urinary exosomes: a promising biomarker of drug-induced nephrotoxicity

    Get PDF
    Drug-induced nephrotoxicity (DIN) is a big concern for clinical medication, but the clinical use of certain nephrotoxic drugs is still inevitable. Current testing methods make it hard to detect early renal injury accurately. In addition to understanding the pathogenesis and risk factors of drug-induced nephrotoxicity, it is crucial to identify specific renal injury biomarkers for early detection of DIN. Urine is an ideal sample source for biomarkers related to kidney disease, and urinary exosomes have great potential as biomarkers for predicting DIN, which has attracted the attention of many scholars. In the present paper, we will first introduce the mechanism of DIN and the biogenesis of urinary exosomes. Finally, we will discuss the changes in urinary exosomes in DIN and compare them with other predictive indicators to enrich and boost the development of biomarkers of DIN

    Instability of CTG repeats is governed by the position of a DNA base lesion through base excision repair.

    Get PDF
    Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 5'-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 3'-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase β and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER

    Inhibition of base excision repair by natamycin suppresses prostate cancer cell proliferation

    Get PDF
    Prostate cancer (PCa) progression is characterized by increased expression and transcriptional activity of the androgen receptor (AR). In the advanced stages of prostate cancer, AR significantly upregulates the expression of genes involved in DNA repair. Upregulation of expression for base excision repair (BER) related genes is associated with poor patient survival. Thus, inhibition of the BER pathway may prove to be an effective therapy for prostate cancer. Using a high throughput BER capacity screening assay, we sought to identify BER inhibitors that can synergize with castration therapy. An FDA-approved drug library was screened to identify inhibitors of BER using a fluorescence-based assay suitable for HTS. A gel-based secondary assay confirmed the reduction of BER capacity by compounds identified in the primary screen. Five compounds were then selected for further testing in the independently derived, androgen-dependent prostate cancer cell lines, LNCaP and LAPC4, and in the nonmalignant prostate derived cell lines PNT1A and RWPE1. Further analysis led to the identification of a lead compound, natamycin, as an effective inhibitor of key BER enzymes DNA polymerase β (pol β) and DNA Ligase I (LIG I). Natamycin significantly inhibited proliferation of PCa cells in an androgen depleted environment at 1 μM concentration, however, growth inhibition did not occur with nonmalignant prostate cell lines, suggesting that BER inhibition may improve efficacy of the castration therapies
    corecore