177 research outputs found

    QoS-Aware Resource Management for Multi-phase Serverless Workflows with Aquatope

    Full text link
    Multi-stage serverless applications, i.e., workflows with many computation and I/O stages, are becoming increasingly representative of FaaS platforms. Despite their advantages in terms of fine-grained scalability and modular development, these applications are subject to suboptimal performance, resource inefficiency, and high costs to a larger degree than previous simple serverless functions. We present Aquatope, a QoS-and-uncertainty-aware resource scheduler for end-to-end serverless workflows that takes into account the inherent uncertainty present in FaaS platforms, and improves performance predictability and resource efficiency. Aquatope uses a set of scalable and validated Bayesian models to create pre-warmed containers ahead of function invocations, and to allocate appropriate resources at function granularity to meet a complex workflow's end-to-end QoS, while minimizing resource cost. Across a diverse set of analytics and interactive multi-stage serverless workloads, Aquatope significantly outperforms prior systems, reducing QoS violations by 5x, and cost by 34% on average and up to 52% compared to other QoS-meeting methods

    6G Wireless Communications in 7-24 GHz Band: Opportunities, Techniques, and Challenges

    Full text link
    The sixth generation (6G) wireless communication nowadays is seeking a new spectrum to inherit the pros and discard the cons of sub-6 GHz, millimeter-wave (mmWave), and sub-terahertz (THz) bands. To this end, an upper mid-band, Frequency Range (FR) spanning from 7 GHz to 24 GHz, also known as FR3, has emerged as a focal point in 6G communications. Thus, as an inexorable prerequisite, a comprehensive investigation encompassing spectrum utilization and channel modeling is the first step to exploit potential applications and future prospects of using this FR in the 6G ecosystem. In this article, we provide FR3 deployment insights into emerging technologies including non-terrestrial network (NTN), massive multi-input multi-output (mMIMO), reconfigurable intelligent surface (RIS), and joint communications and sensing (JCAS). Furthermore, leveraging ray-tracing simulations, our investigation unveils the channel characteristics in FR3 are close to those in the sub-6 GHz band. The analysis of RIS-aided communication shows a higher spectral efficiency achieved in FR3 compared to other FRs when using the same RIS size. Finally, challenges and promising directions are discussed for FR3-based communication systems.Comment: 7 pages, 5 figures, 1 tabl

    Effect of Land Cultivation on Soil Nutrient Sedimentation in Water at Southern China

    Get PDF
    Soil erosion associated with land cultivation exerts a great impact on ecological environment. Such an impact is specific of land, crop, tillage, management and so on. This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China. Two sedimentation sites adjacent to the uncultivated (S1) and cultivated upland (S2) were selected and samples were analyzed. Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments. Soil organic matter, nitrogen and phosphorus contents decreased with the increasing depth. There was no significant difference between two sediments in organic matter and nitrogen contents, but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1. The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality. Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures

    A Study to Assess the Effect of Asphalt Mixture on the Photocatalytic Performance: A Simulation

    Get PDF
    This study reports the simulation of a photocatalytic system process and the photocatalytic property of self-cleaning asphalt concrete (SCAC) with four typical asphalt mixtures. A photocatalytic system was simulated based on the pollutant concentration data, which were collected on three types of city roads. Two photocatalytic indexes were proposed to evaluate the photocatalytic property of self-cleaning asphalt concrete: relative decomposition rate and degradation capacity. Four typical asphalt mixtures were prepared with SBS/TiO2 modified bitumen: AC-13a asphalt mixture (AC-13a), AC-13b asphalt mixture (AC-13b), open-graded fraction courses (OGFC), and porous asphalt concrete (PAC). The performance of the SCAC samples was investigated using the cracking resistance, rutting resistance, and moisture susceptibility. The results show that the degradation capacity of CO is approximately 20 times more than that of HC and CO . The air voids of SCAC, which is exposed to ultraviolet rays, contribute to the photocatalytic indexes in the simulated system in this study. In addition, the SBS /TiO2 modified bitumen does not improve the high- or low-temperature property and water stability of SCAC

    Tunable polarization-drived superior energy storage performance in PbZrO3 thin films

    Get PDF
    Antiferroelectric PbZrO3 (AFE PZO) films have great potential to be used as the energy storage dielectrics due to the unique electric field (E)-induced phase transition character. However, the phase transition process always accompanies a polarization (P) hysteresis effect that induces the large energy loss (Wloss) and lowers the breakdown strength (EBDS), leading to the inferior energy storage density (Wrec) as well as low efficiency. In this work, the synergistic strategies by doping smaller ions of Li+–Al3+ to substitute Pb2+ and lowering the annealing temperature (T) from 700 to 550 ℃ are proposed to change the microstructures and tune the polarization characters of PZO films, except to dramatically improve the energy storage performances. The prepared Pb(1−x)(Li0.5Al0.5)xZrO3 (P(1−x)(L0.5A0.5)xZO) films exhibit ferroelectric (FE)-like rather than AFE character once the doping content of Li+–Al3+ ions reaches 6 mol%, accompanying a significant improvement of Wrec of 49.09 J/cm3, but the energy storage efficiency (η) is only 47.94% due to the long-correlation of FE domains. Accordingly, the low-temperature annealing is carried out to reduce the crystalline degree and the P loss. P0.94(L0.5A0.5)0.06ZO films annealed at 550 ℃ deliver a linear-like polarization behavior rather than FE-like behavior annealed at 700 ℃, and the lowered remanent polarization (Pr) as well as improved EBDS (4814 kV/cm) results in the superior Wrec of 58.7 J/cm3 and efficiency of 79.16%, simultaneously possessing excellent frequency and temperature stability and good electric fatigue tolerance

    Imitation with Spatial-Temporal Heatmap: 2nd Place Solution for NuPlan Challenge

    Full text link
    This paper presents our 2nd place solution for the NuPlan Challenge 2023. Autonomous driving in real-world scenarios is highly complex and uncertain. Achieving safe planning in the complex multimodal scenarios is a highly challenging task. Our approach, Imitation with Spatial-Temporal Heatmap, adopts the learning form of behavior cloning, innovatively predicts the future multimodal states with a heatmap representation, and uses trajectory refinement techniques to ensure final safety. The experiment shows that our method effectively balances the vehicle's progress and safety, generating safe and comfortable trajectories. In the NuPlan competition, we achieved the second highest overall score, while obtained the best scores in the ego progress and comfort metrics

    Locally advanced head and neck squamous cell carcinoma treatment efficacy and safety: a systematic review and network meta-analysis

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) accounts for approximately 3% of new cancer cases and 3% of all deaths worldwide. Most HNSCC patients are locally advanced (LA) at diagnosis. The combination of radiotherapy (RT), chemotherapy, targeted therapy, and immunotherapy are the primary LA-HNSCC treatment options. Nevertheless, the choice of optimal LA-HNSCC treatment remains controversial. We systematically searched public databases for LA-HNSCC-related studies and assess treatment effectiveness and safety by assessing the objective response rate (ORR), ≥3 adverse events (AEs), overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), local-region control (LRC), and disease-specific survival (DSS). 126 randomized controlled clinical trials (RCTs) were included in this study. We show that concurrent RT with nimotuzumab or conventional concurrent chemo-radiotherapy (CCRT) had significantly better efficacy and long-term survival without increasing AEs than RT alone. Accelerated fractionated radiotherapy (AFRT) showed better efficiency than conventional fractionated RT, although it had higher AEs. In addition, concurrent cetuximab combined with RT failed to show a significant advantage over RT alone.Trial registration: PROSPERO CRD42022352127
    • …
    corecore