27 research outputs found

    New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    Get PDF
    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding

    Novel circulating protein biomarkers for thyroid cancer determined through data-independent acquisition mass spectrometry

    No full text
    Background Distinguishing between different types of thyroid cancers (TC) remains challenging in clinical laboratories. As different tumor types require different clinical interventions, it is necessary to establish new methods for accurate diagnosis of TC. Methods Proteomic analysis of the human serum was performed through data-independent acquisition mass spectrometry for 29 patients with TC (stages I–IV): 13 cases of papillary TC (PTC), 10 cases of medullary TC (MTC), and six cases follicular TC (FTC). In addition, 15 patients with benign thyroid nodules (TNs) and 10 healthy controls (HCs) were included in this study. Subsequently, 17 differentially expressed proteins were identified in 291 patients with TC, including 247 with PTC, 38 with MTC, and six with FTC, and 69 patients with benign TNs and 176 with HC, using enzyme-linked immunosorbent assays. Results In total, 517 proteins were detected in the serum samples using an Orbitrap Q-Exactive-plus mass spectrometer. The amyloid beta A4 protein, apolipoprotein A-IV, gelsolin, contactin-1, gamma-glutamyl hydrolase, and complement factor H-related protein 1 (CFHR1) were selected for further analysis. The median serum CFHR1 levels were significantly higher in the MTC and FTC groups than in the PTC and control groups (P < 0.001). CFHR1 exhibited higher diagnostic performance in distinguishing patients with MTC from those with PTC (P < 0.001), with a sensitivity of 100.0%, specificity of 85.08%, area under the curve of 0.93, and detection cut-off of 0.92 ng/mL. Conclusion CFHR1 may serve as a novel biomarker to distinguish PTC from MTC with high sensitivity and specificity

    Evolution, Initiation, and Diversity in Early Plant Embryogenesis

    No full text
    Weijers and colleagues present a review article discussing advances in the study of early plant embryogenesis. The piece examines both Arabidopsis embryogenesis as well as the relevance of findings made in Arabidopsis to other plants throughout evolution.</p

    A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form

    Get PDF
    A key challenge in biology is to understand how the regional control of cell growth gives rise to final organ forms. Plant leaves must coordinate growth along both the proximodistal and mediolateral axes to produce their final shape. However, the cell-level mechanisms controlling this coordination remain largely unclear. Here, we show that, in A. thaliana, WOX5, one of the WUSCHEL-RELATED HOMEOBOX (WOX) family of homeobox genes, acts redundantly with WOX1 and WOX3 (PRESSED FLOWER [PRS]) to control leaf shape. Through genetics and hormone measurements, we find that these WOXs act in part through the regional control of YUCCA (YUC) auxin biosynthetic gene expression along the leaf margin. The requirement for WOXmediated YUC expression in patterning of leaf shape cannot be bypassed by the epidermal expression of YUC, indicating that the precise domain of auxin biosynthesis is important for leaf form. Using time-lapse growth analysis, we demonstrate that WOX-mediated auxin biosynthesis organizes a proximodistal growth gradient that promotes lateral growth and consequently the characteristic ellipsoid A. thaliana leaf shape. We also provide evidence that WOX proteins shape the proximodistal gradient of differentiation by inhibiting differentiation proximally in the leaf blade and promoting it distally. This regulation allows sustained growth of the blade and enables a leaf to attain its final form. In conclusion, we show that the WOX/auxin regulatory module shapes leaf form by coordinating growth along the proximodistal and mediolateral leaf axes

    Air Pollution and Tear Lactoferrin among Dry Eye Disease Modifications by Stress and Allergy: A Case–Control Study of Taxi Drivers

    No full text
    Few studies have explored the possible associations between air pollution and tear lactoferrin (Lf) levels, a non-invasive biological marker of ocular surface diseases, among taxi drivers, while none have explored the modifications by stress and allergic tendencies in the relationship. We recruited 1905 taxi drivers with dry eye disease (DED) and 3803 non-DED controls in Liaoning, China, in 2012–2014. After physical examination and questionnaires were recorded, ocular surface was measured and tear Lf was determined by electrophoresis. Air pollutants and humidity were estimated by measured concentrations from monitoring stations. Conditional logistic regression models were employed to examine the associations of air pollutants and humidity with tear Lf levels. Among taxi drivers with stress or allergic tendencies, an IQR (26 μg/m3, 10 μg/m3) increase in PM10 and NO2 levels elevated the adjusted odds ratio by 1.89 (95% CI, 1.19 to 3.08) or 1.77 (95% CI, 1.06 to 2.90); and 2.87 (95% CI, 1.60 to 3.58) or 2.93 (95% CI, 1.64 to 3.83), respectively. In contrast, humidity was inversely associated for taxi drivers with stress [0.51 (95% CI, 0.38 to 0.64)] or allergic tendencies [0.49 (95% CI, 0.11 to 0.84)]; and for taxi drivers without stress [0.33 (95% CI: 0.17, 0.39)] or without allergic tendencies [0.39 (95% CI, 0.19 to 0.59)]. Tear Lf was negatively associated with each quartile of PM10 or NO2 exposure, and low humidity. PM10, NO2, and low humidity were inversely associated with Lf levels, especially for DED taxi drivers with stress and allergic tendencies

    Adult reference intervals for IgG subclasses with Siemens immunonephelometric assays in Chinese population

    No full text
    Abstract Objective To determine the adult reference intervals for the Siemens IgG subclass reagents. Methods 636 blood samples of healthy adults were analyzed to determine the level of IgG subclass using the reagents of Siemens immunonephelometric assay with molecular biology kits. Results IgGSc reference intervals were as follows: IgG1 4.45–9.76 g/L, IgG2 2.07–8.57 g/L, IgG3 0.08–0.80 g/L and IgG4 0.05–1.54 g/L. There was an excellent correlation between the total IgG and the sum of the IgG subclasses. No significant gender and age differences were observed. Conclusions Our data provide the missing reference intervals and enable the use of the nephelometric IgG subclass reagents in Chinese. The study can offer reference on clinic diagnose

    Rhizosphere Microbiome and Phenolic Acid Exudation of the Healthy and Diseased American Ginseng Were Modulated by the Cropping History

    No full text
    The infection of soil-borne diseases has the potential to modify root exudation and the rhizosphere microbiome. However, the extent to which these modifications occur in various monocropping histories remains inadequately explored. This study sampled healthy and diseased American ginseng (Panax quinquefolius L.) plants under 1–4 years of monocropping and analyzed the phenolic acids composition by HPLC, microbiome structure by high-throughput sequencing technique, and the abundance of pathogens by quantitative PCR. First, the fungal pathogens of Fusarium solani and Ilyonectria destructans in the rhizosphere soil were more abundant in the diseased plants than the healthy plants. The healthy American ginseng plants exudated more phenolic acid, especially p-coumaric acid, compared to the diseased plants after 1–2 years of monocropping, while this difference gradually diminished with the increase in monocropping years. The pathogen abundance was influenced by the exudation of phenolic acids, e.g., total phenolic acids (r = −0.455), p-coumaric acid (r = −0.465), and salicylic acid (r = −0.417), and the further in vitro test confirmed that increased concentration of p-coumaric acid inhibited the mycelial growth of the isolated pathogens for root rot. The healthy plants had a higher diversity of rhizosphere bacterial and fungal microbiome than the diseased plants only after a long period of monocropping. Our study has revealed that the cropping history of American ginseng has altered the effect of pathogens infection on rhizosphere microbiota and root exudation
    corecore