27 research outputs found

    Privacy-Preserving Genetic Relatedness Test

    Get PDF
    An increasing number of individuals are turning to Direct-To-Consumer (DTC) genetic testing to learn about their predisposition to diseases, traits, and/or ancestry. DTC companies like 23andme and Ancestry.com have started to offer popular and affordable ancestry and genealogy tests, with services allowing users to find unknown relatives and long-distant cousins. Naturally, access and possible dissemination of genetic data prompts serious privacy concerns, thus motivating the need to design efficient primitives supporting private genetic tests. In this paper, we present an effective protocol for privacy-preserving genetic relatedness test (PPGRT), enabling a cloud server to run relatedness tests on input an encrypted genetic database and a test facility's encrypted genetic sample. We reduce the test to a data matching problem and perform it, privately, using searchable encryption. Finally, a performance evaluation of hamming distance based PP-GRT attests to the practicality of our proposals.Comment: A preliminary version of this paper appears in the Proceedings of the 3rd International Workshop on Genome Privacy and Security (GenoPri'16

    Existence and stability of solutions to nonlinear impulsive differential equations in beta-normed spaces

    No full text
    In this article, we consider nonlinear impulsive differential equations in beta-normed spaces. We give new concepts of beta-Ulam's type stability. Also we present sufficient conditions for the existence of solutions for impulsive Cauchy problems. Then we obtain generalized beta-Ulam-Hyers-Rassias stability results for the impulsive problems on a compact interval. An example illustrates our main results

    One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity

    No full text
    Abstract A one-step method which involves exfoliating graphite materials (GIMs) off into graphene materials (GEMs) in aqueous suspension of CL-20 and forming CL-20/graphene materials (CL-20/GEMs) composites by using ball milling is presented. The conversion of mixtures to composite form was monitored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The impact sensitivities of CL-20/GEM composites were contrastively investigated. It turned out that the energetic nanoscale composites based on CL-20 and GEMs comprising few layers were accomplished. The loading capacity of graphene (reduced graphene oxide, rGO) is significantly less than that of graphene oxide (GO) in CL-20/GEM composites. The formation mechanism was proposed. Via this approach, energetic nanoscale composites based on CL-20 and GO comprised few layers were accomplished. The resulted CL-20/GEM composites displayed spherical structure with nanoscale, ε-form, equal thermal stabilities, and lower sensitivities

    Nano-HNS Particles: Mechanochemical Preparation and Properties Investigation

    No full text
    Nano-2,2′,4,4′,6,6′-hexanitrostilbene (HNS) particles were successfully prepared by a mechanochemical (i.e., high energy milling) process without an organic solvent, which can be viewed as a green technology. The particle size, morphology, specific area, crystal phase, thermal decomposition properties, impact sensitivity, and short duration shock initiation sensitivity were characterized and tested. The diameter of milling HNS is about 89.2 nm with a narrow size distribution and without agglomeration of particles. The formation mechanism of nano-HNS can be viewed as the transformation from thin HNS sheets with a one-dimensional nanostructure to three-dimensional nanoparticles. The nano-HNS particles present a much higher Ea and lower impact sensitivity than purified HNS, revealing the outstanding safety properties. From the results of the short duration shock initiation sensitivity, 50% and 100% initiation voltages are decreased compared with those of HNS-IV, indicating the higher initiation sensitivity

    Extreme zircon O isotopic compositions from 3.8 to 2.5Ga magmatic rocks from the Anshan area, North China Craton

    No full text
    Most zircon from Archean (3.8-2.5Ga) trondhjemitic rocks, meta-gabbro, meta-diorite and monzogranite from the Anshan area, North China Craton, has δ18O values in the range of 4.6-7.5‰, but some has extreme compositions (0.02-11.0‰, with one value a

    Additional file 1: of One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity

    No full text
    Supporting Information for One-step ball milling preparation of nanoscale CL-20/graphene oxide for significantly reduced particle size and sensitive. (DOCX 1448 kb

    Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for late Palaeozoic and early Mesozoic evolution of the Central Asian Orogenic Belt

    No full text
    <p>This work presents zircon ages and Hf-in-zircon isotopic data for Permian and Triassic A-type granitoids and reviews the evolution of central Inner Mongolia, China, during the early Permian and Late Triassic. SHRIMP U–Pb dating of zircons of peralkaline granites yielded <sup>206</sup>Pb/<sup>238</sup>U ages of 294 ± 4 Ma and 293 ± 9 Ma that reflect the time of Permian magmatism. Zircon ages were also obtained for Late Triassic granites (226 ± 4 Ma, 224 ± 4 Ma). Our results, in combination with published zircon ages and geochemical data, document distinct magmatic episodes in central Inner Mongolia.</p> <p>The Permian peralkaline granites show typical geochemical features of A-type granites, which also have highly positive zircon <i>ε</i><sub>Hf(<i>t</i>)</sub> values (+4.9 – +17.1), indicating a significant contribution of an isotopically depleted source, likely formed from mantle-derived magmas. Late Triassic A-type granitoids, however, in central Inner Mongolia show large variations and mostly positive in zircon <i>ε</i><sub>Hf(<i>t</i>)</sub> values (−1.3 – +13.5), suggesting derivation from a mixture of crust and mantle or metasomatized lithospheric mantle with crustal contamination. The geochemical characteristics of the Permian peralkaline granites and Late Triassic A-type granitoids are consistent with a post-collisional setting and were likely related to asthenosphere upwelling during the evolution of the Northern Block and Central Asian Orogenic Belt (CAOB).</p
    corecore