249 research outputs found
Symmetric failures in symmetric control systems
AbstractThis paper discusses the fault-tolerance of symmetric systems with respect to controllability, which is a fundamental characteristic of control systems. In particular, we reveal the underlying mathematical mechanism of the loss of controllability for symmetric systems induced by failures. Based on the decomposition of the symmetric systems into subsystems under the symmetry, the controllability of the entire system can be discussed by checking that of each subsystem. The analysis of the fault-tolerance in this paper is an extension of this idea with the aid of the chain-adapted transformation matrix for the decomposition. The result is shown as a necessary condition for symmetric systems to retain the controllability despite some symmetric failures. We also discuss sufficient conditions
MicroRNA-33b inhibits liver cancer cell proliferation, migration and invasion via down-regulation of Fli-1 and MMP-2 protein expressions
Purpose: To study the influence of microRNA-33b (miR-33b) on liver cancer cell proliferation, migration and invasiveness, and the mechanism involved. Methods: MicroRNA-33b or Fli-1 overexpression plasmid was transfected into liver cancer (SMMC7721) cells. Cell proliferation, migration, and invasiveness were determined using cell counting kit 8 (CCK-8), scratch test, and Transwell invasion assay, respectively. The amounts of miR-33b and Fli-1 in liver cancer tissues, paracancerous normal tissues, and miR-33b overexpression and control groups were measured using qRT-PCR, while protein concentration of matrix metalloproteinase 2 (MMP-2) was assayed using Western blotting. Results: Fli-1 protein was markedly upregulated in liver cancerous cells, relative to paracancerous normal tissues (p < 0.05). MicroRNA-33b protein expression was also significantly upregulated in miR33b overexpression group, but the corresponding Fli-1 expression was downregulated in miR-33b overexpression group, relative to control (p < 0.05). MicroRNA-33b overexpression significantly and time-dependently inhibited SMMC7721 cell proliferation and migration, but it reduced the degree of apoptosis (p < 0.05). Liver cancer (SMMC7721) cells in miR-33b overexpression group were less invasive than the control group (p < 0.05). Similarly, miR-33b overexpression significantly downregulated MMP-2 protein expression in SMMC7721cells (p < 0.05). Conclusion: Overexpression of miR-33b suppresses the proliferation, migratory and invasive potential of hepatic cancer cells via down-regulation of Fli-1 and MMP-2 protein expression. This finding may be useful in the identification of new liver cancer drugs
- …