MicroRNA-33b inhibits liver cancer cell proliferation, migration and invasion via down-regulation of Fli-1 and MMP-2 protein expressions

Abstract

Purpose: To study the influence of microRNA-33b (miR-33b) on liver cancer cell proliferation, migration and invasiveness, and the mechanism involved. Methods: MicroRNA-33b or Fli-1 overexpression plasmid was transfected into liver cancer (SMMC7721) cells. Cell proliferation, migration, and invasiveness were determined using cell counting kit 8 (CCK-8), scratch test, and Transwell invasion assay, respectively. The amounts of miR-33b and Fli-1 in liver cancer tissues,  paracancerous normal tissues, and miR-33b overexpression and control groups were measured using qRT-PCR, while protein concentration of matrix metalloproteinase 2 (MMP-2) was assayed using Western blotting. Results: Fli-1 protein was markedly upregulated in liver cancerous cells, relative to paracancerous normal tissues (p < 0.05). MicroRNA-33b protein expression was also significantly upregulated in miR33b overexpression group, but the corresponding Fli-1 expression was downregulated in miR-33b overexpression group, relative to control (p < 0.05). MicroRNA-33b overexpression significantly and time-dependently inhibited SMMC7721 cell proliferation and migration, but it reduced the degree of apoptosis (p < 0.05). Liver cancer (SMMC7721) cells in miR-33b overexpression group were less invasive than the control group (p < 0.05). Similarly, miR-33b overexpression significantly downregulated MMP-2 protein expression in SMMC7721cells (p < 0.05). Conclusion: Overexpression of miR-33b suppresses the proliferation, migratory and invasive potential of hepatic cancer cells via down-regulation of Fli-1 and MMP-2 protein expression. This finding may be useful in the identification of new liver cancer drugs

    Similar works