1,664 research outputs found

    Generalized List Decoding

    Get PDF
    This paper concerns itself with the question of list decoding for general adversarial channels, e.g., bit-flip (XOR\textsf{XOR}) channels, erasure channels, AND\textsf{AND} (ZZ-) channels, OR\textsf{OR} channels, real adder channels, noisy typewriter channels, etc. We precisely characterize when exponential-sized (or positive rate) (L1)(L-1)-list decodable codes (where the list size LL is a universal constant) exist for such channels. Our criterion asserts that: "For any given general adversarial channel, it is possible to construct positive rate (L1)(L-1)-list decodable codes if and only if the set of completely positive tensors of order-LL with admissible marginals is not entirely contained in the order-LL confusability set associated to the channel." The sufficiency is shown via random code construction (combined with expurgation or time-sharing). The necessity is shown by 1. extracting equicoupled subcodes (generalization of equidistant code) from any large code sequence using hypergraph Ramsey's theorem, and 2. significantly extending the classic Plotkin bound in coding theory to list decoding for general channels using duality between the completely positive tensor cone and the copositive tensor cone. In the proof, we also obtain a new fact regarding asymmetry of joint distributions, which be may of independent interest. Other results include 1. List decoding capacity with asymptotically large LL for general adversarial channels; 2. A tight list size bound for most constant composition codes (generalization of constant weight codes); 3. Rederivation and demystification of Blinovsky's [Bli86] characterization of the list decoding Plotkin points (threshold at which large codes are impossible); 4. Evaluation of general bounds ([WBBJ]) for unique decoding in the error correction code setting

    Multiple Packing: Lower and Upper Bounds

    Full text link
    We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N>0 N>0 and LZ2 L\in\mathbb{Z}_{\ge2} . A multiple packing is a set C\mathcal{C} of points in Rn \mathbb{R}^n such that any point in Rn \mathbb{R}^n lies in the intersection of at most L1 L-1 balls of radius nN \sqrt{nN} around points in C \mathcal{C} . We study the multiple packing problem for both bounded point sets whose points have norm at most nP\sqrt{nP} for some constant P>0P>0 and unbounded point sets whose points are allowed to be anywhere in Rn \mathbb{R}^n . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive various bounds on the largest possible density of a multiple packing in both bounded and unbounded settings. A related notion called average-radius multiple packing is also studied. Some of our lower bounds exactly pin down the asymptotics of certain ensembles of average-radius list-decodable codes, e.g., (expurgated) Gaussian codes and (expurgated) spherical codes. In particular, our lower bound obtained from spherical codes is the best known lower bound on the optimal multiple packing density and is the first lower bound that approaches the known large LL limit under the average-radius notion of multiple packing. To derive these results, we apply tools from high-dimensional geometry and large deviation theory.Comment: The paper arXiv:2107.05161 has been split into three parts with new results added and significant revision. This paper is one of the three parts. The other two are arXiv:2211.04408 and arXiv:2211.0440

    CARMI: A Cache-Aware Learned Index with a Cost-based Construction Algorithm

    Full text link
    Learned indexes, which use machine learning models to replace traditional index structures, have shown promising results in recent studies. However, our understanding of this new type of index structure is still at an early stage with many details that need to be carefully examined and improved. In this paper, we propose a cache-aware learned index (CARMI) design to improve the efficiency of the Recursive Model Index (RMI) framework proposed by Kraska et al. and a cost-based construction algorithm to construct the optimal indexes in a wide variety of application scenarios. We formulate the problem of finding the optimal design of a learned index as an optimization problem and propose a dynamic programming algorithm for solving it and a partial greedy step to speed up. Experiments show that our index construction strategy can construct indexes with significantly better performance compared to baselines under various data distribution and workload requirements. Among them, CARMI can obtain an average of 2.52X speedup compared to B-tree, while using only about 0.56X memory space of B-tree on average.Comment: 16 pages, 15 figure

    Multiple Packing: Lower Bounds via Error Exponents

    Full text link
    We derive lower bounds on the maximal rates for multiple packings in high-dimensional Euclidean spaces. Multiple packing is a natural generalization of the sphere packing problem. For any N>0 N>0 and LZ2 L\in\mathbb{Z}_{\ge2} , a multiple packing is a set C\mathcal{C} of points in Rn \mathbb{R}^n such that any point in Rn \mathbb{R}^n lies in the intersection of at most L1 L-1 balls of radius nN \sqrt{nN} around points in C \mathcal{C} . We study this problem for both bounded point sets whose points have norm at most nP\sqrt{nP} for some constant P>0P>0 and unbounded point sets whose points are allowed to be anywhere in Rn \mathbb{R}^n . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. We derive the best known lower bounds on the optimal multiple packing density. This is accomplished by establishing a curious inequality which relates the list-decoding error exponent for additive white Gaussian noise channels, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We also derive various bounds on the list-decoding error exponent in both bounded and unbounded settings which are of independent interest beyond multiple packing.Comment: The paper arXiv:2107.05161 has been split into three parts with new results added and significant revision. This paper is one of the three parts. The other two are arXiv:2211.04407 and arXiv:2211.0440

    Multiple Packing: Lower Bounds via Infinite Constellations

    Full text link
    We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N>0 N>0 and LZ2 L\in\mathbb{Z}_{\ge2} . A multiple packing is a set C\mathcal{C} of points in Rn \mathbb{R}^n such that any point in Rn \mathbb{R}^n lies in the intersection of at most L1 L-1 balls of radius nN \sqrt{nN} around points in C \mathcal{C} . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant LL under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory.Comment: The paper arXiv:2107.05161 has been split into three parts with new results added and significant revision. This paper is one of the three parts. The other two are arXiv:2211.04408 and arXiv:2211.0440

    List Decoding Random Euclidean Codes and Infinite Constellations

    Get PDF
    We study the list decodability of different ensembles of codes over the real alphabet under the assumption of an omniscient adversary. It is a well-known result that when the source and the adversary have power constraints P P and N N respectively, the list decoding capacity is equal to 12logPN \frac{1}{2}\log\frac{P}{N} . Random spherical codes achieve constant list sizes, and the goal of the present paper is to obtain a better understanding of the smallest achievable list size as a function of the gap to capacity. We show a reduction from arbitrary codes to spherical codes, and derive a lower bound on the list size of typical random spherical codes. We also give an upper bound on the list size achievable using nested Construction-A lattices and infinite Construction-A lattices. We then define and study a class of infinite constellations that generalize Construction-A lattices and prove upper and lower bounds for the same. Other goodness properties such as packing goodness and AWGN goodness of infinite constellations are proved along the way. Finally, we consider random lattices sampled from the Haar distribution and show that if a certain number-theoretic conjecture is true, then the list size grows as a polynomial function of the gap-to-capacity
    corecore