8,982 research outputs found

    Novel Ir-X thermal protection coatings designed for extreme aerodynamic heating environment

    Get PDF
    Due to the rapid evaporation of SiO2 protective layer, most Si-containing oxidation resistant coatings could not withstand a temperature above 1800℃, which is not enough for hypersonic voyage in upper atmosphere. With a higher melting point (2440℃) and lower oxygen permeability(10-20g·m-1·s-1), iridium is supposed to be a promising coating material for ultra-high temperature applications. However, Iridium has a low emissivity ε(0.017 for 2.5-25μm) and high recombination coefficient γ(0.64 at 1200℃) of atomic oxygen, resulting in a much higher thermal response compared with the ceramic materials under the same aerodynamic environment. To solve this problem, elements such as Al, Cr, Zr etc. were selected to modify pure Ir to form Ir-X (X=Al, Cr or Zr) coating. The modification element X in Ir-X coating forms high emissivity and low recombination coeffcient oxide on Ir, which meanwhile prevents the Ir from atomic oxygen. It was found that Ir-Al, Ir-Cr, Ir-Ti, Ir-Zr, Ir-Ta and Ir-Hf diffusion coating could be prepared via pack cementation. The recombination coefficient and emissivity of as-oxidized Ir-Al were changed to 0.0089 and 0.723, respectively. Please click Additional Files below to see the full abstract

    Pedestrian traffic induced lateral vibration including the effect of TMD

    Get PDF
    This study explores the dynamic behavior of beam induced by bipedal pedestrian traffic and corresponding vibration reducing method by tuned mass damper. Each pedestrian from motion crowd simplifies as a bipedal robot comprised of a lump mass and two massless spring-damping legs. In addition, the tuned mass dampers are installed on the bottom of structure to relieving the vibration of structure. The interactions among pedestrians, tuned mass dampers and structure are considered to establish a governing equation. Research indicates that both the tuned mass damper and pedestrian evidently alter the structural properties of the structure by affecting its frequency and damping capacity. The structure tends to be gently flexible at a lower frequency as pedestrian walk across its surface, but the corresponding damping capacity of the structure is improved. The tuned mass damper always improves both the vibration response and dynamic properties of structure. However, its self-dynamic characteristics of the tuned mass damper tend to deteriorate. The tuned mass damper relieves effectively the lateral vibration in a slender structure than the rigid structure. The change in the mass ratio of tuned mass damper to structure affects significantly the dynamic behaviors of structure. In addition, the layouts of the tuned mass dampers on structure also have remarkable influences on the behaviors. The results of this study provide potential pathways for understanding the vibratory mechanisms of slender structures such as footbridges, grandstands, or stations under crowd excitations

    Entanglement oscillation and survival induced by non-Markovian decoherence dynamics of entangled squeezed-state

    Full text link
    We study the exact decoherence dynamics of the entangled squeezed state of two single-mode optical fields interacting with two independent and uncorrelated environments. We analyze in detail the non-Markovian effects on the entanglement evolution of the initially entangled squeezed state for different environmental correlation time scales. We find that the environments have dual actions on the system: backaction and dissipation. In mparticular, when the environmental correlation time scale is comparable to the time scale for significant change in the system, the backaction would counteract the dissipative effect. Interestingly, this results in the survival of some residual entanglement in the final steady state.Comment: 6 pages, 3 figure

    Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons.

    Get PDF
    In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding

    LEO Satellite-Enabled Grant-Free Random Access with MIMO-OTFS

    Full text link
    This paper investigates joint channel estimation and device activity detection in the LEO satellite-enabled grant-free random access systems with large differential delay and Doppler shift. In addition, the multiple-input multiple-output (MIMO) with orthogonal time-frequency space modulation (OTFS) is utilized to combat the dynamics of the terrestrial-satellite link. To simplify the computation process, we estimate the channel tensor in parallel along the delay dimension. Then, the deep learning and expectation-maximization approach are integrated into the generalized approximate message passing with cross-correlation--based Gaussian prior to capture the channel sparsity in the delay-Doppler-angle domain and learn the hyperparameters. Finally, active devices are detected by computing energy of the estimated channel. Simulation results demonstrate that the proposed algorithms outperform conventional methods.Comment: This paper has been accepted for presentation at the IEEE GLOBECOM 2022. arXiv admin note: text overlap with arXiv:2202.1305

    Systematics of g factors of 2_1^+ states in even-even nuclei from Gd to Pt: A microscopic description by the projected shell model

    Full text link
    The systematics of g factor of first excited 2^+ state vs neutron number N is studied by the projected shell model. The study covers the even-even nuclei of all isotopic chains from Gd to Pt. g factors are calculated by using the many-body wavefunctions that reproduces well the energy levels and B(E2)'s of the ground-state bands. For Gd to W isotopes the characteristic feature of the g factor data along an isotopic chain is described by the present model. Deficiency of the model in the g factor description for the heavier Os and Pt isotopes is discussed.Comment: 9 pages, 5 figure

    Full-length enriched multistage cDNA library construction covering floral bud development in Populus tomentosa

    Get PDF
    Flowering involves expression of a suite of genes associated with floral development. The genome of the Chinese white poplar (Populus trichocarpa) was sequenced because of its importance as a model tree for genetic studies as well as being an economically important woody plant. However, information on expressed genes involved in poplar floral bud development is insufficient to allow annotation of genes and use of the genomic information. To isolate and characterize genes involved in flowering of Populus tomentosa, floral bud samples were collected at different developmental stages from floral bud initiation to flower maturity, and full-length enriched cDNA libraries from both male and female floral buds were constructed. The results of titer analysis showed that the titer of the female and male primary libraries were 8.00 × 105 and 7.20 × 105 pfu/ml, respectively, and the titer of the amplified libraries were 2.60 × 108 and 2.56 × 108 pfu/ml, respectively. The combination ratio reached 90% and the insert size was 400 to 2000 bp. The results indicated that cDNA libraries were successfully constructed.Keywords: cDNA library, floral bud, flowering, Populus tomentosaAfrican Journal of Biotechnology Vol. 11(29), pp. 7373-7377, 10 April, 201

    A High‐resolution Atmospheric Dust Record for 1810–2004 A.D. Derived from an Ice Core in Eastern Tien Shan, Central Asia

    Get PDF
    Centennial‐scale, high‐resolution records of atmospheric dust conditions are rare in the arid and semiarid regions of central Asia, limiting our understanding of the regional climate and environmental changes and their potential driving forces. In this paper, we present an annually resolved atmospheric dust record covering the period of 1810–2004 A.D., reconstructed from an ice core retrieved at 4512 m above sea level from the Miaoergou Glacier in the eastern Tien Shan. The time series of dust flux for the past 195 years shows three periods of relatively low values (i.e., 1810–1829 A.D., 1863–1940 A.D., and 1979–2004 A.D.) and two periods of relatively high values (i.e., 1830–1862 A.D. and 1941–1978 A.D.). Spatial correlation analysis suggests possible regional factors controlling the dust flux, including antecedent summer precipitation, spring soil moisture, and near‐surface wind speed. In addition, the Miaoergou dust flux is closely associated with the winter index of the North Atlantic Oscillation (NAO) over the past two centuries, with high (low) dust periods coinciding with the negative (positive) phases of the NAO. The persistent relationship suggests that the NAO may have been a key driver on dust flux change over the arid regions between the Tien Shan and Kunlun Mountains
    corecore