33,091 research outputs found

    Holographic R\'enyi entropy in AdS3_3/LCFT2_2 correspondence

    Get PDF
    The recent study in AdS3_3/CFT2_2 correspondence shows that the tree level contribution and 1-loop correction of holographic R\'enyi entanglement entropy (HRE) exactly match the direct CFT computation in the large central charge limit. This allows the R\'enyi entanglement entropy to be a new window to study the AdS/CFT correspondence. In this paper we generalize the study of R\'enyi entanglement entropy in pure AdS3_3 gravity to the massive gravity theories at the critical points. For the cosmological topological massive gravity (CTMG), the dual conformal field theory (CFT) could be a chiral conformal field theory or a logarithmic conformal field theory (LCFT), depending on the asymptotic boundary conditions imposed. In both cases, by studying the short interval expansion of the R\'enyi entanglement entropy of two disjoint intervals with small cross ratio xx, we find that the classical and 1-loop HRE are in exact match with the CFT results, up to order x6x^6. To this order, the difference between the massless graviton and logarithmic mode can be seen clearly. Moreover, for the cosmological new massive gravity (CNMG) at critical point, which could be dual to a logarithmic CFT as well, we find the similar agreement in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of graviton and logarithmic mode to HRE from CFT computation. It has distinct feature from the one in pure AdS3_3 gravity.Comment: 28 pages. Typos corrected, published versio

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper
    • …
    corecore