40 research outputs found
Functional Group Induced Transformations in Stacking and Electron Structure in Mo2CTx/NiS Heterostructures
The two-dimensional transition metal carbide/nitride family (MXenes) has
garnered significant attention due to their highly customizable surface
functional groups. Leveraging modern material science techniques, the
customizability of MXenes can be enhanced further through the construction of
associated heterostructures. As indicated by recent research, the Mo2CTx/NiS
heterostructure has emerged as a promising candidate exhibiting superior
physical and chemical application potential. The geometrical structure of
Mo2CTx/NiS heterostructure is modeled and 6 possible configurations are
validated by Density Functional Theory simulations. The variation in functional
groups leads to structural changes in Mo2CTx/NiS interfaces, primarily
attributed to the competition between van der Waals and covalent interactions.
The presence of different functional groups results in significant band
fluctuations near the Fermi level for Ni and Mo atoms, influencing the role of
atoms and electron's ability to escape near the interface. This, in turn,
modulates the strength of covalent interactions at the MXenes/NiS interface and
alters the ease of dissociation of the MXenes/NiS complex. Notably, the
Mo2CO2/NiS(P6_3/mmc) heterostructure exhibits polymorphism, signifying that two
atomic arrangements can stabilize the structure. The transition process between
these polymorphs is also simulated, further indicating the modulation of the
electronic level of properties by a sliding operation.Comment: 10 pages, 5 figures,2 table
Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment From a Hadal Biosphere at the Yap Trench
Hadal biosphere represents the deepest part of the ocean with water depth >6,000 m. Accumulating evidence suggests the existence of unique microbial communities dominated by heterotrophic processes in this environment. However, investigations of the microbial diversity and their metabolic potentials are limited because of technical constraints for sample collection. Here, we provide a detailed metagenomic analysis of three seawater samples at water depths 5,000–6,000 m below sea level (mbsl) and three surface sediment samples at water depths 4,435–6,578 mbsl at the Yap Trench of the western Pacific. Distinct microbial community compositions were observed with the dominance of Gammaproteobacteria in seawater and Thaumarchaeota in surface sediment. Comparative analysis of the genes involved in carbon, nitrogen and sulfur metabolisms revealed that heterotrophic processes (i.e., degradation of carbohydrates, hydrocarbons, and aromatics) are the most common microbial metabolisms in the seawater, while chemolithoautotrophic metabolisms such as ammonia oxidation with the HP/HB cycle for CO2 fixation probably dominated the surface sediment communities of the Yap Trench. Furthermore, abundant genes involved in stress response and metal resistance were both detected in the seawater and sediments, thus the enrichment of metal resistance genes is further hypothesized to be characteristic of the hadal microbial communities. Overall, this study sheds light on the metabolic versatility of microorganisms in the Yap Trench, their roles in carbon, nitrogen, and sulfur biogeochemical cycles, and how they have adapted to this unique hadal environment
HSPA12A Unstabilizes CD147 to Inhibit Lactate Export and Migration in Human Renal Cell Carcinoma
This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Background: Metastasis accounts for 90% of cancer-associated mortality in patients with renal cell carcinoma (RCC). However, the clinical management of RCC metastasis is challenging. Lactate export is known to play an important role in cancer cell migration. This study investigated the role of heat shock protein A12A (HSPA12A) in RCC migration. Methods: HSPA12A expression was examined in 82 pairs of matched RCC tumors and corresponding normal kidney tissues from patients by immunoblotting and immunofluorescence analyses. The proliferation of RCC cells was analyzed using MTT and EdU incorporation assays. The migration of RCC cells was evaluated by wound healing and Transwell migration assays. Extracellular acidification was examined using Seahorse technology. Protein stability was determined following treatment with protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132. Mass spectrometry, immunoprecipitation, and immunoblotting were employed to examine protein-protein interactions. Results: RCC tumors from patients showed downregulation of HSPA12A, which was associated with advanced tumor node metastasis stage. Intriguingly, overexpression of HSPA12A in RCC cells inhibited migration, whereas HSPA12A knockdown had the opposite effect. Lactate export, glycolysis rate, and CD147 protein abundance were also inhibited by HSPA12A overexpression but promoted by HSPA12A knockdown. An interaction of HSPA12A with HRD1 ubiquitin E3 ligase was detected in RCC cells. Further studies demonstrated that CD147 ubiquitination and proteasomal degradation were promoted by HSPA12A overexpression whereas inhibited by HSPA12A knockdown. Notably, the HSPA12A overexpression-induced inhibition of lactate export and migration were abolished by CD147 overexpression. Conclusion: Human RCC shows downregulation of HSPA12A. Overexpression of HSPA12A in RCC cells unstabilizes CD147 through increasing its ubiquitin-proteasome degradation, thereby inhibits lactate export and glycolysis, and ultimately suppresses RCC cell migration. Our results demonstrate that overexpression of HSPA12A might represent a viable strategy for managing RCC metastasis
Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea
Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats
The depolymerization of lignin in water/acetone/formic acid synergistic solvents to produce high-value added phenolic monomers without external hydrogen and catalyst
The limited solubility of lignin in commonly used solvents poses a challenge for its depolymerization into high-value monomers. This paper investigates the solubility of alkali lignin in water, methanol, ethanol, acetone, 1,4-dioxane, and their binary solution, and examines their impact on lignin depolymerization. The distribution of depolymerization products was correlated with the chemical structure changes in various solvent. Among the solvents tested, water-acetone mixtures demonstrated exceptional solubility for alkali lignin (95.24%) and provide the highest yield of bio-oil and phenolic monomers. The enhanced solubility of guaiacol units in acetone, combined with the addition of water in the co-solvent system dramatically improved the solubility of alkali lignin. Moreover, formic acid donated hydrogen protons to facilitate lignin depolymerization and prevented the repolymerization of unstable intermediates. Optimal reaction conditions were achieved at 300 °C for 120 mins using a mixed solvent composed of water, acetone, and formic acid in a ratio of 5:5:1 (v/v/v), corresponding to the highest yield of bio-oil with 81.45 wt%, the lowest yield of residue with 6.20 wt%, and a phenolic monomer content of 57.48%. Furthermore, this co-solvent system revealed satisfactory adaptability for converting various lignin into phenolic monomers
Correlation between Lpa, APO-A, APO-B, and Stenosis of Middle Cerebral Artery in Patients with Cerebral Ischemic Stroke
Ischemic stroke (CIS) is characterized by a high incidence, disability, and mortality. Numerous studies have demonstrated that intracranial arterial stenosis is an important pathological basis of CIS, and its main cause is atherosclerosis. Dyslipidemia is an important risk factor for atherosclerosis. Lysophosphatidic acid (Lpa), apolipoprotein -A(APO-A), and apolipoprotein -B(APO-B) proved to be significantly correlated with the severity of coronary artery disease. This study retrospectively collected the case data of 186 patients with CIS treated from May 2020 to May 2022 and explored the correlation between Lpa, APO-A, APO-B, and middle cerebral artery (MCA) stenosis in CIS patients
Distinct microbial nitrogen cycling processes in the deepest part of the ocean
ABSTRACT The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600–10,500 m below sea level (mbsl)], surface sediments [0–46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200–306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean.IMPORTANCEThe metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean
Toward an Understanding of the Detection and Function of R-loops in Plants
Although lagging behind studies in humans and other mammals, R-loop studies in plants have recently entered an exciting stage in which the roles of R-loops in gene expression, genome stability, epigenomic signatures, and plant development and stress responses are being elucidated. Here, we reviewed the strengths and weaknesses of existing methodologies, which were largely developed for R-loop studies in mammals, and then we discussed the potential challenges of applying these methodologies to R-loop studies in plants. We then focused on recent advances in the functional characterization of R-loops in Arabidopsis thaliana and rice. Recent studies in plants indicate that there are coordinated relationships between R-loops and gene expression, and between R-loops and epigenomic signatures that depend, in part, on the types of R-loops involved. Finally, the emerging roles of R-loops in plants and directions for future research were discussed