290 research outputs found

    Parametric analysis of a solid oxide fuel cell auxiliary power unit operating on syngas produced by autothermal reforming of hydrocarbon fuels

    Get PDF
    A 1 kWe integrated auxiliary power unit (APU) system consisting of an autothermal reformer and a solid oxide fuel cell (SOFC) unit, as well as balance-of-plant components, was designed and analyzed. A relatively easy-to-approach SOFC model was developed in order to conveniently calculate V-I and P-I curves and the system\u27s net efficiency at different operating conditions. The effects of steam to carbon and oxygen to carbon ratios in the reactants, channel dimensions of the SOFC unit, and hydrocarbon fuel types on the integrated APU system\u27s performance were discussed. Five hydrocarbon fuels including diesel, Jet-A, gasoline, ethanol, and methanol were studied as fuel sources for the APU system. The system\u27s net efficiency around 35% is possible for all the tested fuels in the current density range of 100–400 mA/cm2. The APU system was also verified to be thermally self-sustainable in the steady state operation by a thermal management analysis

    Enhancing Subtask Performance of Multi-modal Large Language Model

    Full text link
    Multi-modal Large Language Model (MLLM) refers to a model expanded from a Large Language Model (LLM) that possesses the capability to handle and infer multi-modal data. Current MLLMs typically begin by using LLMs to decompose tasks into multiple subtasks, then employing individual pre-trained models to complete specific subtasks, and ultimately utilizing LLMs to integrate the results of each subtasks to obtain the results of the task. In real-world scenarios, when dealing with large projects, it is common practice to break down the project into smaller sub-projects, with different teams providing corresponding solutions or results. The project owner then decides which solution or result to use, ensuring the best possible outcome for each subtask and, consequently, for the entire project. Inspired by this, this study considers selecting multiple pre-trained models to complete the same subtask. By combining the results from multiple pre-trained models, the optimal subtask result is obtained, enhancing the performance of the MLLM. Specifically, this study first selects multiple pre-trained models focused on the same subtask based on distinct evaluation approaches, and then invokes these models in parallel to process input data and generate corresponding subtask results. Finally, the results from multiple pre-trained models for the same subtask are compared using the LLM, and the best result is chosen as the outcome for that subtask. Extensive experiments are conducted in this study using GPT-4 annotated datasets and human-annotated datasets. The results of various evaluation metrics adequately demonstrate the effectiveness of the proposed approach in this paper

    Potential of tropical maize populations for improving an elite maize hybrid

    Get PDF
    Identifying exotic maize (Zea mays L) populations possessing favorable new alleles lacking in local elite hybrids is an important strategy for improving maize hybrids. Selection of an appropriate breeding method will increase the chance of successfully transferring these favorable new alleles into elite inbred lines of local hybrids. The objec¬tives of this study were to: (i) evaluate 14 maize populations from CIMMYT and identify those containing favorable alleles for grain yield, ear length, ear diameter, kernel length, plant height, and ear height that are lacking in a local super hybrid [Jidan261 (W9706 × Ji853)], and to (ii) determine which inbred parent should be improved. These re¬sults showed that the populations Pob43, Pob501, and La Posta had positive and significant numbers of favorable alleles not found in hybrid W9706 × Ji853 that could be used for simultaneous improvement of its grain yield, ear length, and kernel length, and that population QPM-Y was also a good donor for improvement of ear diameter and kernel length in the hybrid. Based on allele frequencies in the two inbred lines and the donor population, when the populations Pob43, La Posta, Pob501, and QPM-Y were used as donors, inbred line W9706 would be improved by selfing the F1 of the cross W9706 × donor population. These results suggested that CIMMYT germplasm has potential to improve temperate elite hybrids. The relationship between GCA and SCA from a previous study and the parameters obtained from the Dudley method are discussed. The results showed that the values of Lplμ’ esti¬mates obtained by applying the Dudley method had the same trend as GCA effects for grain yield but a less clear trend for ear length, while the trends in the relationship value were reversed for SCA between these populations and Lancaster-derived lines

    Molecular Ultrasound Monitoring of Early Artery Injury After Carotid Balloon Angioplasty

    Get PDF
    Cardiovascular intervention is a common treatment procedure for many cardiovascular diseases. But restenosis often occurs after these procedures, greatly discounting their long-term therapeutic effects. Early detection of endothelial denudation is helpful for the diagnosis and prevention of restenosis. Here, we fabricated targeted microbubbles by conjugating anti-collagen IV antibodies to the surface of biotinylated microbubbles (MBColIV) and applied them for ultrasound molecular imaging of endothelial injury at early stage. Our results showed that the MBColIV, with a typical multi-peak particle distribution, was successfully constructed, which was confirmed by Alexa Fluor® 555-labeled secondary antibody. Ex vivo adhesion of microbubbles revealed that MBColIV can effectively and specially bind to the surface of balloon-injured carotid artery. The in vivo animal experiments showed ultrasound molecular imaging signals from carotid artery-injured rats administrated with MBColIV were significantly higher than those administrated with isotype control microbubbles. Histological staining of the left carotid common artery revealed that collagen IV was obviously exposed after endothelium denudation in balloon-injured artery. In conclusion, our current study provides an effective approach to detect vascular injury at the early stage and a potential platform for image-guided therapy to vascular injury

    Phosphoproteins regulated by heat stress in rice leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (<it>Oryza sativa </it>L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.</p> <p>Methods</p> <p>Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.</p> <p>Results</p> <p>Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.</p> <p>Conclusion</p> <p>Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H<sup>+</sup>-ATPase, remains unknown.</p

    CRISPR-Cas technology opens a new era for the creation of novel maize germplasms

    Get PDF
    Maize (Zea mays) is one of the most important food crops in the world with the greatest global production, and contributes to satiating the demands for human food, animal feed, and biofuels. With population growth and deteriorating environment, efficient and innovative breeding strategies to develop maize varieties with high yield and stress resistance are urgently needed to augment global food security and sustainable agriculture. CRISPR-Cas-mediated genome-editing technology (clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated)) has emerged as an effective and powerful tool for plant science and crop improvement, and is likely to accelerate crop breeding in ways dissimilar to crossbreeding and transgenic technologies. In this review, we summarize the current applications and prospects of CRISPR-Cas technology in maize gene-function studies and the generation of new germplasm for increased yield, specialty corns, plant architecture, stress response, haploid induction, and male sterility. Optimization of gene editing and genetic transformation systems for maize is also briefly reviewed. Lastly, the challenges and new opportunities that arise with the use of the CRISPR-Cas technology for maize genetic improvement are discussed
    • …
    corecore