839 research outputs found

    Microstructure and mechanical properties of large size as-cast Ti-43Al-9V-0.2Y (at.%) alloy ingot from brim to centre

    Get PDF
    A Ti-43Al-9V-0.2Y (at.%) alloy ingot with the size of Ф160×400mm was prepared by vacuum arc remelting (VAR). The microstructure of the as-cast Ti-43Al-9V-0.2Y alloy was composed of B2/α₂/γ lamellar colonies and massive B2 and γ phases which were distributed along the boundaries of these lamellar colonies in the form of equiaxed grains. Based on the grain size variation along the radius direction of the ingot, the ingot could be divided into four ring regions from brim to centre. It has been understood that the grain size variation between these four regions was due to the interplay of the effects of the cooling rate and the yttrium content on solidified microstructures in these regions. Mechanical testing of the samples cut from these four regions showed that there existed a clear correlation between the yield strength and the average grain sizes of the four ring regions, which approximately conformed to a Hall-Petch relationship

    Effect of misaligned bearing support performance on natural frequencies of marine propulsion shafting

    Get PDF
    The influences of bearing support performance which would be affected by the quality of shafting alignment apparently on the lateral vibration natural frequencies of marine propulsion shafting are analyzed in this paper. A three dimensional finite element model representing the entire propulsion shafting, including the bearings, shaft and propeller, has been developed using finite element software for lateral vibration analyses. The effects of the number of bearings, the stiffness and effective contact length of the bearings on the natural frequencies of the shaft are studied respectively. The simulation analysis show that the bearing of a certain position often only has a significant impact on the frequencies of a certain order or a few orders, and the natural frequencies of the shaft can be transferred to avoid the resonance speeds through the reasonable arrangement and performance design of the shaft bearings. In addition, the curve alignment technology is also presented to improve the current shafting alignment quality and misalignment angle error, so as to ensure the design performance of radial bearings. Experimental results show that the curve alignment technology is an effective method to reduce the uneven load and eccentric wear of the bearings, which are beneficial to avoid the resonance vibration and improve the life and stability of shaft system

    CAD-based geometry parametrisation for shape optimisation using Non-uniform Rational B-splines

    Get PDF
    PhDWith the continuous growth in computing power, numerical optimisation is increasingly applied in shape optimisation using Computational Fluid Dynamics (CFD). Since CFD computations are expensive, gradient-based optimisation is preferable when the number of design variables is large. In particular the recent progress with adjoint solvers is important, as these solvers allow to compute the gradients at constant computational cost regardless of the number of design variables, and as a consequence enable the use of automatically derived and rich design spaces. One of the crucial steps in shape optimisation is the parametrisation of the geometry, which directly determines the design space and thus the nal results. This thesis focuses on CAD-based parametrisations with the CAD model continuously updated in the design loop. An existing approach that automatically derives a parametrisation from the control points of a net of B-Spline patches is extended to include NURBS. Continuity constraints for water-tightness, tangency and curvature across patch interfaces are evaluated numerically and a basis for the resulting design space is computed using Singular Value Decomposition (SVD). A CAD-based shape optimisation framework is developed, coupling a flow solver, an adjoint solver, the in-house CAD kernel and a gradient-based optimiser. The flow sensitivities provided by the adjoint solver and the geometric sensitivities computed through automatic differentiation (AD) are assembled and provided to the optimiser. An extension to maintain the design space and hence enables use of a quasi-Newton method such as the BFGS algorithm is also presented and the convergence improvements are demonstrated. The framework is applied to three shape optimisation cases to show its effectiveness. The performance is assessed and analysed. The effect of parameters that can be chosen by the user are analysed over a range of cases and best practice choices are identifi ed.China Scholarship Council [No. 201306230097] and Queen Mary University of London

    Adjoint-Based Aerodynamic Optimisation of Wing Shape Using Non-uniform Rational B-Splines

    Get PDF
    Abstract Numerical shape optimisation with adjoint CFD is applied using the NURBS based Parametrisation method with Continuity Constraints (NSPCC) for aerodynamically optimising three dimensional surfaces. The ONERA M6 wing is re-parametrised with NURBS surfaces including weight adjustments to repre- sent the three dimensional wing accurately, resulting in fewer control points and smoother variation of curvature. The NSPCC CAD kernel is coupled with the in- house flow and adjoint solver STAMPS and a gradient-based optimiser to minimise the drag of the ONERA M6 wing in transonic Euler flow conditions. Optimisation results are presented for the B-Spline and NURBS parametrisations

    Estimation of Reference Voltages for Time-difference Electrical Impedance Tomography

    Get PDF
    corecore