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Estimation of Reference Voltages  

for Time-difference Electrical Impedance Tomography  
 

 

Hao Yu, Graduate Student Member, IEEE, Xingchen Wan, Zhongxu Dong, Zhixi Zhang, and Jiabin Jia, Senior 

Member, IEEE 

Abstract—Electrical impedance tomography (EIT), as a 

merging technology, has been widely used in the industrial 

and clinical fields. However, the causes of the uncertainty of 

measuring reference voltages, which are affected by 

medium temperature, measurement errors, and reference 

conductivity distribution that varies with the patient’s 

posture, have brought obstacles to applying EIT in industry 

and medicine. In the paper, two methods: the Multiple 

Measurements (MM) method and the deep learning method, 

convolutional neural network (CNN) are proposed to 

establish the nonlinear mapping between measurement 

voltages and reference voltages. The novelty of the article is 

firstly adopting the deep learning method to estimate the 

reference voltages from measurement voltages for the time-

difference EIT. Both static experiments—water tank 

experiments and dynamic experiments—two-phase flow 

experiments were carried out. Compared with the two 

existing estimation methods: best homogeneous (BH) 

approximation and measurement-scale feature (MSF), and 

the proposed MM method, the deep learning method shows 

excellent results in quantitative analysis of the relative 

errors of reference voltages and ground truth. In addition, 

the CNN method also displays a better performance in 

qualitative analysis in terms of the reconstructed 

tomographic images.  The study shows the potential to real-

time estimate the reference voltages for time-difference EIT 

in the industrial and medical fields. 

Index Terms—Electrical impedance tomography (EIT), 

reference voltages, deep learning, convolutional neural 

network (CNN), conductivity reconstruction. 

I. INTRODUCTION 

S a merging and promising visualization technology, 

electrical impedance tomography (EIT) has been widely 

used in industrial and clinical fields due to the characteristics of 

real-time monitoring, no radiation, non-invasive and low cost 

[1]–[3]. In medicine, EIT is mainly used in the diagnosis of lung 

diseases since lung diseases could result in changes of electrical 

impedance in tissue [4], [5]; in industry, EIT is mainly applied 

in the field of two-phase flow to determine the distribution, 

volume fraction (VF) of the dispersed phase, and phase velocity 

thanks to the advantages of convenience and ease of installation 

[6], [7]. In practical applications, due to the requirement of real-

time performance, non-iterative algorithms are usually adopted. 

The typical non-iterative algorithms are the Tikhonov 

regularization [8], linear back-projection (LBP) [9] and 

modified sensitivity back projection (MSBP) [10]. 

For time-difference EIT reconstruction, the prior information 

of voltages obtained from the baseline or reference frame is 

required [11]. Currently, there are two ways to obtain reference 

voltages from the homogeneous medium. One is to obtain the 

reference voltages from the numerical calculation, which 

requires the shape of the phantom in simulation to be identical 

to that of the actual situation [12]. The other method is to 

measure the boundary voltages in the homogenous medium-

filled container, which is usually used in pipeline fluid flow 

velocity detection or volume fraction measurement in industry. 

For the first method, reference voltages obtained by simulation 

are often too ideal, since the factors of measurement noise and 

the changes in contact impedance of electrodes are both 

neglected. For the second method, the process of obtaining 

reference voltages is inconvenient, complicated, time-

consuming and expensive. In some cases, it is unachievable for 

the pipeline to be only filled with the homogeneous medium to 

take reference voltages. Besides, the reference voltage taken at 

one moment is not valid to use later, because of the electrical 

conductivity change of fluids caused by the change of 

temperature or ion concentration. Fluid conductivity had to be 

monitored in real-time to calibrate reference voltages [13]. 

These problems limit the wider applications of EIT in industry. 

Therefore, it is of great importance to explore methods to 

accurately estimate reference voltages. The typical best 

homogeneous (BH) approximation method [14] could be used 

to estimate the reference voltages, however, as the problem 

mentioned above, the changes in external factors, such as 

ambient temperature and conductivity distribution in the 

homogeneous medium, can make the estimated reference 

voltages inaccurate. Wang et al. [15] proposed the 

measurement-scale feature (MSF) method to estimate reference 

frames by five different algebra operators, but simple arithmetic 

operations make the estimations of reference voltages 

inaccurate.  

The authors believe reference voltages from pure continuous 

flow and measurement voltages from two-phase flow are 
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correlated. To extract reference voltages directly from 

measurement voltages, the new fitting methods: multiple 

measurements (MM) and CNN methods are proposed to 

establish the nonlinear mapping between measurement voltages 

and reference voltages for time-difference EIT. As a typical 

deep learning method, CNN has achieved excellent 

performances in solving different problems such as the EIT 

inverse problem, image segmentation, and signal analysis and 

processing [16]–[18]. Besides, compared with recurrent neural 

network (RNN) and long short-term memory (LSTM) which 

have intractable parameter tuning processes and slow inference 

time since the sequential dependencies limit parallelization 

potential, CNN has a faster inference process and is easier to be 

trained [19].  

In the paper, the MSBP algorithm is adopted to reconstruct 

the conductivity distribution. In addition, two methods: BH and 

MSF methods are presented to estimate reference voltages for 

comparisons. The comparison results under different methods 

in estimating reference voltages are shown through water tank 

experiments, vertical upward oil-water and air-water two-phase 

flow experiments.  

The main contributions of the work are as follows, 

1) A novel reference estimation method—MM method is 

proposed to estimate the reference voltages from 

measurement voltages; 

2) Deep learning technology CNN is firstly proposed for 

estimating the reference voltages for time-difference EIT;  

3) CNN method outperforms other methods in estimating 

reference voltages.  

The structure of the paper is organized as follows. Section II 

introduces the reference voltages of EIT and details four 

methods to estimate the reference voltages. Section III 

describes the experiment setup and experiments are carried out 

to compare estimation performances under different methods. 

Finally, Section IV concludes the paper. 

II. METHODS  

In this section, the importance of reference voltages for time-

difference EIT is introduced. The principles of four methods, 

MM, CNN, BH and MSF methods in estimating reference 

voltages from heterogeneous measurement voltages are 

introduced. Finally, three evaluation metrics are introduced to 

quantitatively analyse the estimation accuracy of the estimated 

reference voltages and their effects on the reconstructed 

conductivity. 

A. EIT reference voltage 

Reference voltages are important for time-difference EIT to 

reconstruct conductivity distribution,  

 ·U S     (1) 

where ΔU is the change in boundary voltages between 

measurement and reference voltages. S is the sensitivity matrix, 

also called the Jacobin matrix, which is determined by the 

position of the electrodes, the excitation and measurement 

patterns, and the amount of mesh. Δσ is the change in 

conductivity distribution. 

The quality of reference voltages greatly affects the 

reconstructed conductivity distribution according to (1), so 

accurate estimation of reference voltages is critical in EIT [15], 

[20], [21]. The typical profiles of measurement voltages, 

reference voltages and simulated reference voltages with the 

voltage index are shown in Fig. 1. The actual measurement and 

reference voltages are measured in the National Engineering 

Laboratory (NEL) oil-water two-phase flow facility and the 

detailed information is described in [22]. The simulation is 

carried out in COMSOL Multiphysics. The conductivity of the 

homogeneous medium is set to 5 S/m and the excitation current 

is set to 100 mA. From Fig. 1 (a) it can be seen that in the actual 

reference voltage curve, the maximum value of each U-shaped 

line is not perfectly smooth, indicating that the method of 

obtaining the reference voltages through simulation is not 

appropriate. In the actual environment, reference voltages will 

be affected by the temperature of the working environment, the 

measurement errors and the conductivity of the homogeneous 

medium. These factors are difficult to be achieved in simulation 

[15]. In the simulation, the reference voltages are generally 

unchanged and their U-shaped spikes have similar numerical 

values as shown in Fig. 1 (b), which is inconsistent with the 

reference voltages obtained in practice. 

To obtain a satisfactory reference voltage, the acquirement 

instrument should be stable and the measurement error can be 

reduced by averaging a number of reference voltage frames. 

When a reference is taken, for static experiments, a 

homogeneous and stable medium should be maintained. For 

dynamic experiments, the homogeneous medium flow velocity 

should be stable. Furthermore, in the measurement process, the 

environment temperature should not change dramatically. 

B. Estimation methods of reference voltages 

To derive the nonlinear mapping between reference voltages 

and measurement voltages, the MM method, CNN method and 

two existing methods: BH and MSF are introduced in this part. 
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Fig.1. Measurement voltages and reference voltages of EIT. (a) Actual 

reference voltages. (b) Simulated reference voltages. 
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1) Multiple Measurements Method: Based on the previous 

observation of the characteristics of voltage curves that the 

reference voltages dynamically fluctuate between the average 

and minimum values of the measurement voltages, the MM 

method establishes the nonlinear mapping between reference 

voltages and measurement voltages. The mathematical 

expression of the MM method is given by: 

 _ _ _ _Init Est Min Meas Avg Meas Min MeasU U U U        (2) 

where UInit_Est is the initial estimated reference voltage, UMin_Meas 

is the minimum measurement voltage, and UAvg_Meas is the 

average measurement voltage. Both of them are the 1 × 104 

vectors. The paper uses mean square error (MSE) to obtain the 

minimum distance between the estimated reference voltage and 

the actual reference voltage. ω denotes the factor which makes 

the distance smallest, so that optimize the estimated reference 

voltage and improve estimation accuracy. The definition of 

MSE is as follows: 

 
2

_

1
( )

N

MSE Act Init Est

i

U U
N

 L  (3) 

where UAct is the actual reference voltage. ℒMSE  is the mean 

square error. N is the number of voltages acquired in each frame, 

which is 104 in the paper. 

Substituting UInit_Est of Equation (2) into Equation (3), MSE 

becomes a quadratic function only concerning ω. Then, the 

optimal ω is taken at the lowest point of the quadratic function:  
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 (4) 

For a certain two-phase flow, several known actual reference 

frames and the corresponding estimated reference frames are 

substituted into (4) to derive better ω for this kind of flow. Then, 

the relationship between the rate of VF and ω for different cases 

is fitted linearly, and the midpoint of the linear fit is used as the 

universal result of the optimization. After optimization, 

parameters ω are 0.2760 and 0.5338 for oil-water and air-water 

two-phase flows, respectively. For the static experiment, ω is 

optimized by parameter line search, which is 0.9. 

To further improve the estimation accuracy, the correction 

factor u is introduced: 

 _Est Init EstU u U   (5) 

where u is the average value of the coefficients of the first-order 

term of linear fitting between the UInit_Est and the UAct under 

different conditions. The measurement voltages of different VF 

cases are brought into (2) to obtain the initial estimation 

reference voltages, which have an approximately linear 

relationship with the corresponding actual reference voltages. 

The linear slopes for the different cases are averaged to obtain 

the correction factor for this type of two-phase flow. The 

coefficients u are 0.8269 and 1.0156 for oil-water and air-water 

two-phase flows, respectively. In addition, u is 1 for the static 

experiment. 

2) CNN Method: By iterative updating of weights and biases, 

the CNN network extracts the features of measurement voltages 

to establish the relationship between reference voltages and 

measurement voltages. The architecture of the CNN is shown 

in Fig. 2. In the network, the measurement voltages and actual 

reference voltages are used as the input (L1) and output (L9), 

respectively. L2 to L7 share the same structure, which consists 

of a 1 × 3 convolution kernel, followed by a rectified linear unit 

(ReLU) [23] activation function and a max-pooling layer. 

ReLU could solve the problem of vanishing gradient, while 

          

 
Fig.2. Architecture of the CNN network. 

 
TABLE I 

OUTPUT SIZE OF THE CNN ARCHITECTURE 

Layer Operation Output size 

1 Input 1×104 

2 1×3 Conv.+ReLU+Max Pooling 1×52×8 
3 1×3 Conv.+ReLU+Max Pooling 1×26×16 

4 1×3 Conv.+ReLU+Max Pooling 1×13×32 

5 1×3 Conv.+ReLU+Max Pooling 1×7×64 
6 1×3 Conv.+ReLU+Max Pooling 1×4×128 

7 1×3 Conv.+ReLU+Max Pooling 1×2×256 

8 50% Dropout+512 FC+104 FC 1×1×104 
9 Output 1×104 

Height×Width×Channel 
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promoting the sparsity of the network and alleviating 

overfitting. The definition of the ReLU is as follows: 

 ( ) max(0, )y x x  (6) 

where x and y(x) are the input and output of the activation 

function, respectively.  

Layer 8 is constructed by the sequentially connected dropout 

layer, 512-dimension fully connected (FC) and 104-dimension 

FC layers. The generalization ability of the model can be 

enhanced by the dropout layer. In the training process, 50% of 

neurons before the 512-dimension FC layer are randomly 

discarded. The output size of each layer is described in Table Ⅰ. 

In the paper, MSE is adopted as the loss function of the 

network. Meanwhile, to overcome the overfitting problem, l2 

regularization is used and the expression is given by:  

 
22

2
( ) i

i

g      (7) 

where θ is the weight parameter of the CNN. 

In the work, the EIT dataset is established from the NEL oil-

water two-phase flow experiments, air-water two-phase flow 

experiments and water tank experiments. The data appearing in 

the test set do not belong to the training set. The training data 

size for oil-water and air-water two-phase flows is 2946, 3528, 

and for the test set is 834, 418 respectively. Besides, for the 

static experiment, there are 1350 data in the training set and 150 

data in the test set. In the training set, the oil-water dataset 

includes 8 different volume fractions, ranging from 9.01 % to 

30.20%. The air-water dataset includes 15 different volume 

fractions, ranging from 1.91% to 8.53%. Two cases are 

considered for the training set of the static experiments: one 

metal rod is randomly placed in the centre area of the water tank, 

and metal and insulating rods are placed at random in diagonal 

areas of the water tank.  

The adaptive moment estimation algorithm (Adam) 

optimizer is adopted. The training process is executed in the 

Pytorch environment with 50 epochs and a batch size of 16. The 

l2 regularization factor is set to 0.00001 and the initial learning 

rate is set to 0.001 with 0.1 decay rate every 25 epochs. The k-

fold cross-validation strategy is adopted [24] and the epoch with 

the smallest MSE in the validation process is used for the test 

set, where k is 10 in the paper. The best model in the k-fold 

cross-validation process is selected as the final model. The 

training process is implemented in the computer with NVidia 

GeForce RTX 2070, Intel Core i7-9700K CPU and 32 GB 

RAM. 

3) Best Homogeneous Approximation Method: BH method 

has been widely used to find the initial reference voltages based 

on the baseline voltages and measurement voltages. The 

mathematical expression is as follows: 

 
     

E E E E3 3
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  (8) 

where Uo is the baseline voltage obtained at an arbitrary 

baseline conductivity distribution. In the paper, Uo is selected 

from the arbitrary actual reference voltage obtained from the 

pipeline, namely, Uo is the specific voltage vector of the actual 

reference voltage. UMea is the measured boundary voltage. β is 

the gain factor and nE is the number of electrodes, which is 16 

in the paper. 

4) Measurement-scale Feature Method: For the MSF method, 

different feature operators: Arithmetic Mean, Range, Midrange, 

Electrode-Based Average Midrange and Electrode-Based 

Average Range, are adopted. The relationship between actual 

reference voltages UAct and baseline voltages Uo is as follows: 

 
 

 o

ct
Act o

Af U
U U

f U
      (9) 

where f (·) is the feature operator. 

The estimated reference voltages should be as close to the 

actual reference voltages as possible, which means the feature 

operator of the reference voltages can be replaced by that of the 

measurement voltages. Therefore, the relationship between 

estimated reference voltages and measurement voltages can be 

established by:  

 
 

 
Mea

Est o
o

f U
U U

f U
   (10) 

According to [21], the midrange feature operator has the best 

and most stable performance in estimating reference voltages 

when the conductivity of the reconstructed target is lower than 

that of the background in some cases. Therefore, in the paper, 

midrange feature operator is adopted to represent the MSF 

method and the expression is given by: 

 
1

min ( ) (max( ) min( ))
2

range U U U   (11) 

where U is the voltage calculated by the midrange feature 

operator. In the paper, U represents both UMea and Uo. 

C. Image Reconstruction Method 

To reduce the influence of different algorithms on imaging 

quality, such as the number of iterations and related 

regularization parameters, the MSBP method is used in the 

paper to reconstruct the conductivity distribution, and the 

expression is as follows: 

 
Fig.3. Mesh of EIT inverse problem. 
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where σ1 is the conductivity distribution of the homogeneous 

medium, σi  is the conductivity distribution of the mixture 

medium. 

D. Evaluation Metrics 

In the paper, three metrics: relative error (RE), correlation 

coefficient (CC) and volume fraction relative error (VFRE) are 

adopted to quantitatively analyse the reference estimation 

performance under different methods.  

1) Relative Error: RE is used to illustrate the accuracy of the 

estimation reference voltages: 

 
Est Act

Act

U U
RE

U


  (13) 

2) Correlation Coefficient: CC, which is used to evaluate the 

bias between reconstruction conductivity by estimated 

reference voltages and by actual reference voltages, is defined 

as follows: 
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where M is the total pixel number of the reconstruction 

conductivity; ΔσEst i
 is the conductivity distribution of the ith 

point by estimation reference voltages, and ΔσAct i
 is the 

conductivity distribution of the ith point by actual reference 

voltages; ΔσEst
̅̅ ̅̅ ̅̅  and ΔσAct

̅̅ ̅̅ ̅̅ ̅  denote the mean of the ΔσEst  and 

ΔσAct , respectively. In the work, the background domain is 

divided into 316 pixels as shown in Fig 3. 

3) Volume Fraction Relative Error: For two-phase flows, the 

volume fraction i of the ith pixel of the dispersed phase can be 

obtained by the reconstructed relative conductivity distribution 

[25], and the relationship is as follows:  

  (15) 

The frame volume fraction of the two-phase flow is the 

average of all pixels i and the final estimated VF Est is the 

average VF of different frames (about 200 frames in the work). 

The VFRE is introduced to evaluate the estimation accuracy of 

the volume fraction of two-phase flow: 

 t ActEs

Act

VFRE





  (16) 

where Act is the volume fraction of the two-phase flow using 

actual reference voltages. 

III. RESULTS AND ANALYSIS 

A. Experiment Setup 

For the static experiments, the water tank experiments were 

executed. For the dynamic experiments, the oil-water two-

phase flow experiments were carried out at the NEL multiphase 

flow facility and the air-water two-phase flow experiments 

were carried out at the flow loop facility. The adjacent 

excitation and measurement patterns are adopted in the paper; 

therefore, the measurement voltages and reference voltages are 

both 1×104 vectors. All data are acquired by ITS v5r Electrical 

Resistance Tomography system. 

1) Water tank experiment: The static experiments were 

carried out in a 30 cm diameter water tank and the EIT data 

acquisition system is shown in Fig. 4. The boundary voltages of 

the measured object and the reference voltages of the 

homogeneous medium are obtained through the measurement 

and excitation circuits. Tap water is selected as the background 

medium, and the metal and insulating rods with fixed 5 cm 

diameter are selected as imaging objects. Two cases are 

included in the experiments. One is that the metal rod is 

randomly placed in the centre area of the water tank. The other 

is that metal and insulating rods are placed at random in 

diagonal areas of the water tank. 

2) Oil-water facility: For the NEL oil-water two-phase flow 

facility, a three-phase separator, which contains the oil and 

water fluids, is the core device. The heat exchangers are used to 

maintain the temperature of the fluids within ± 1 °C. By two 

pumps, water and oil can circulate in the test section. After 

water and oil are measured by the corresponding metering 

sections, they are mixed in a mixing section and then flow into 

the test section, where boundary voltages are measured by the 

1

1

2 2

2 i

i

i














Computer and software

Communication 

Port

Data 

Acquisition 

Board 

Excitation

 Circuit

Measurement 

Circuit

Measurement electrodes

 
Fig.4. EIT data acquisition system. 
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EIT sensor. Dual layers of EIT sensors with a 70 mm axial 

distance are evenly arranged along the circumferential direction. 

Furthermore, in the paper, refined oil Paraflex HT9 and the 

aqueous solution of Magnesium Sulphate of concentration 120 

g/l are adopted in the experiment for oil-water two-phase flow. 

In the experiment process, by adjusting the ratio of water and 

oil, at the same total volumetric flow rate, mixtures with 

different volume fractions can be obtained. 

It should be mentioned that no gas is delivered in the oil-

water experiment. 

3) Air-water facility: For the air-water two-phase flow 

facility, the air and tap water are utilized as the two-phase flow 

medium. By the air mass flow controller, the airflow rate is 

maintained. In a water cycle, a mixed water-air flow goes 

through the test section where boundary voltages are sampled 

by the EIT sensor, the 5.80 m horizontal pipeline, and finally 

back to the water tank. In addition, the flow rate of air and tap 

water can be measured by the mass flow meter and turbine flow 

meter, respectively. Detailed information about the experiment 

setup and working procedures is described in [26].  

B. Comparison and Analysis Based on Different Methods 

1) Static experiments: Fig. 5 introduces two cases of water 

tank experiments. All methods could accurately reconstruct the 

material and position of rods, and the CNN method has the best 

estimating performance in terms of RE and CC. Besides, the 

average evaluation metrics of the test set are shown in Fig. 6. 

The CNN method outperforms other methods in estimating 

reference voltages from measurement voltages with 0.9996 CC 

and 0.448% RE. The average training time of the CNN model 

is 2 minutes and 5 seconds. It should be mentioned that the MM 

method is mainly used in situations where the data fluctuate 

over a wide range because the method mainly extracts the 

minimum and average characteristics of the data to estimate the 

reference voltage. However, unlike the dynamic experiment, 

the static experiment has a small variation range of the reference 

voltages, so the MM method is only moderately effective.  

2) Dynamic experiments: As examples, two oil-water and 

two air-water cases are listed in Table II. The reference volume 

fractions are calculated based on their corresponding actual 

reference voltages. 

In the training process, the nets take 2 minutes and 22 

seconds for the oil-water two-phase flow dataset and 2 minutes 

and 30 seconds for the air-water two-phase flow dataset. 

Furthermore, in the dynamic two-phase flows experiments, the 

CNN method spends an average of 5.5 ms in inference. In 

contrast, the average inference time of MSF is 0.03 ms, and for 

BH and MM are 0.0329 and 0.3675 ms, respectively. Due to the 

low complexity of traditional algorithms, their inference time is 

shorter. But 5.5 ms is acceptable in practice, so the potential of 

CNN for online implementation is indicated from experiments. 

Four cases are analysed in the paper, and the comparison 

results and relevant evaluation metrics are shown in Fig. 7. The 

continuous phase (water) and dispersed phase (oil or air) 

 
Best results are highlighted in bold for different cases. 

Fig.5. Image reconstruction results and relevant evaluation metrics of water tank experiments. 
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Fig. 6. Evaluation metrics of the test set. (a), (b) Average CC and RE of the 

water tank experiments. 

TABLE II 

VOLUMETRIC FLOW RATE OF FLUIDS IN THE TEST SET 

Total 

volumetric 

flow rate 

(m3/h) 

Water 

volumetric 

flow rate 

(m3/h) 

Dispersed phase 

volumetric flow 

rate (m3/h) 

Volume fraction 

based on real 

reference 

90 63 27 (Oil) 29.42% 

60 48 12 (Oil) 19.34% 

15.632 14.612 1.02 (Air) 6.01% 

5.412 5.232 0.18 (Air) 2.24% 
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correspond to the colour bar from red to blue respectively, and 

the presence of the dispersed phase is illustrated by the patches 

of blue. Case 1 to Case 4 correspond to the four cases in the test 

set, with 29.42%, 19.34% reference VF for oil-water and 6.01%, 

2.24% reference VF for air-water two-phase flows respectively. 

As for case 1 and case 2, BH, MSF and MM methods fail to 

reconstruct the image due to the inaccuracy of the estimated 

reference voltages. For case 3, the two-phase flow images 

reconstructed by the MSF, BH and CNN methods are basically 

the same, but there are differences in details, such as the size of 

the red patches. MM method fails again to reconstruct results 

which are similar to that using actual reference voltages due to 

the inaccuracy reference voltages. For case 4, all estimation 

methods are effective in EIT reconstruction. It should be 

mentioned that due to the complexity of the two-phase flow, 

such as turbulence, the location and shape of the blue patches 

are uncertain. Besides, generally, the more accurate the 

estimated reference voltage is, the closer the CC is to 1, but due 

to the influence of voltage normalization in the conductivity 

reconstruction process, the CC value might also appear 

abnormal, such as the result of the MM method in Data 1. 

In quantitative analysis, similar to the conclusion in the static 

experiments, although different methods have different 

performances in estimating the reference voltages for four cases, 

it can be still seen that the CNN method is with the smallest RE 

and the largest CC. In addition, compared with other reference 

estimation methods, the CNN method shows the most accurate 

reference voltages and conductivity distribution in various 

situations. Besides, although the reference voltage estimation 

performances of some methods are similar to that of the CNN 

method, such as MSF in case 3 and MM in case 4, CNN 

indicates good robustness in the above four cases. In a summary, 

 Actual UAct BH MSF MM CNN 

Oil-water: 

Case 1 

 

RE 

CC 

 
0 

1 

 
80.31% 

0.4737 

 
80.25% 

0.5006 

 
11.71% 

0.2487 

 
0.65% 

0.9971 

Oil-water: 

Case 2 

 

RE 

CC 

 
0 

1 

 
41.41% 

0.7081 

 
53.20% 

0.7238 

 
12.48% 

0.7510 

 
2.70% 

0.9289 
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Best results are highlighted in bold for different cases. 

Fig.7. Image reconstruction results and relevant evaluation metrics under different two-phase flow cases. 

 

Fig. 8. Evaluation metrics of the test set. (a), (b) Average CC and RE of the 

oil-water two-phase flow. (c), (d) Average CC and RE of the air-water two-
phase flow. 
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CNN can be the best choice in industrial two-phase flow 

applications for estimating reference voltages. 

The randomly selected data have accidental errors and to 

eliminate the errors, the averages of the evaluation indexes are 

calculated based on the test set. From Fig. 8, it can be shown 

that the average RE for CNN is the smallest for oil-water and 

air-water two-phase flows, with 1.77% and 1.68% respectively, 

which is consistent with the analysis for case 1 to case 4. In 

addition, the average CC for the CNN method is also the best, 

with 0.9361 and 0.9255 for oil-water and air-water two-phase 

flows. Fig. 9 shows the comparison results between actual and 

estimated reference voltages under different methods using 

Data 1 and the absolute error curves between actual and 

estimation reference voltages are shown in Fig. 10. In this way, 

it also can reflect that the proposed CNN method outperforms 

other methods, and the estimated reference voltage curve nearly 

coincides with the actual reference voltage curve.   

The volume fraction of the two-phase flow could be obtained 

by the MSBP reconstruction algorithm using measurement 

voltages and reference voltages, and the results under different 
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Fig. 10. Absolute error between estimation and actual reference voltages 

using Data 1.  

TABLE III 

VOLUME FRACTION BY DIFFERENT METHODS 

Real 

reference 
BH MSF MM CNN 

29.42% 

(Oil-water) 
0 0 23.69% 29.74% 

19.34% 

(Oil-water) 
0 0 12.52% 18.64% 

6.01% 

(Air-water) 
4.26% 1.74% 0 5.89% 

2.24% 

(Air-water) 
1.41% 0.38% 2.13% 2.57% 

TABLE IV 

VOLUME FRACTION RELATIVE ERROR BY DIFFERENT METHODS 

BH MSF MM CNN 

100% 100% 19.48% 1.09% 

100% 100% 35.26% 3.62% 

29.12% 71.05% 100% 2.00% 

37.05% 83.04% 4.91% 14.73% 
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Fig.9. Comparison between actual and estimated reference voltage results from different methods using Data 1. (a) BH. (b) MSF. (c) MM. (d) CNN.  
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estimation methods are given in Table III. Due to the error of 

estimating the reference voltages, in some cases, BH, MSF and 

MM methods fail to predict the VF. In contrast, the CNN 

method shows good performance in estimating VF under 

different mediums and flow velocity of two-phase flow. 

Furthermore, the evaluation metric VFRE is shown in Table IV 

with the best results highlighted in bold. In most cases, VFRE 

using the CNN method performs better than other methods. In 

the last row of the table, the VFRE by the MM method is the 

smallest, and the error of CNN is larger. This is mainly because 

the VF calculated using the reference voltages is smaller, a 

slight change in the predicted VF will lead to a large relative 

error. However, from a numerical point of view, the VF 

obtained by CNN is acceptable. In addition, under the four VF 

estimation cases, the CNN method has the best robustness and 

stability. 

Fig. 11 introduces the relationship between VF using 

estimated reference voltages and VF by actual reference 

voltages for oil-water and air-water two-phase flows, and it can 

be seen from the figure that the ratio between corresponding VF 

is near 1. The absolute error is within ± 2%, which is acceptable 

for two-phase flows. 

The MM method focuses on extracting the measurement 

voltage variation characteristics of the two-phase flow to 

estimate the reference voltage, and the volume fraction 

estimated by the method is more accurate, compared with BH 

and MSF methods. Besides, the MM method establishes the 

empirical formula through data fitting, which is simple and 

saves computing resources. For the disadvantage, the effect of 

the method is not obvious due to the small variation range of 

the measurement voltage in the static experiment. The 

advantages of the CNN method are the accuracy of both the 

reference voltage and the volume fraction estimation, and the 

robustness of the method. The disadvantage of the method is 

that it relies on hardware resources for training and inference. 

C. Effects of the Number of Convolutional Layers   

The estimation performance under the different number of 

convolutional layers is shown in Fig. 12. CNN6 means that the 

net uses 6 convolutional layers and CNN0 means that there is 

no convolutional layer in the net, only fully connected layers. 

The estimation performance MSE of CNN6 is the smallest of 

the three experiments. In addition, it can be inferred from the 

figure that for a network, in a certain depth, deeper models 

generally mean better nonlinear expression capabilities and can 

learn more complex transformations, so that more complex 

feature inputs can be fitted.  

IV. CONCLUSION 

In this work, the multiple measurements method and the 

convolutional neural network method are proposed to establish 

the nonlinear mapping between measurement voltages and 

reference voltages. By the CNN method, the reference frame of 

EIT, which is easily affected by environmental factors such as 

temperature, can be updated timely and accurately. Through 

static water tank and dynamic two-phase flow experiments, the 

effectiveness of the CNN method is shown, compared with the 

best homogeneous approximation method, measurement-scale 

feature method and multiple measurements method. The CNN 

method achieved 0.9361 correlation coefficient, 1.77% relative 

error and 0.9255 correlation coefficient, 1.68% relative error for 

oil-water and air-water two-phase flows. For the static 

experiments, the CNN method achieved 0.9996 correlation 

coefficient, 0.448% relative error. Our work suggests that the 

CNN model is able to estimate reference voltages from 

complicated measurement voltages, which brings a wider 

potential to apply EIT in the industrial and medical fields. 
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