211 research outputs found

    Perspectives and challenges of applying the water-food-energy nexus approach to lake eutrophication modelling

    Get PDF
    Embargo until August 4, 2023The water-food-energy (WFE) nexus is about balancing competing interests to secure the sustainability of services provided by interconnected sectors. Ignoring the interconnections could cause serious consequences. For example, eutrophication caused by overemphasizing on food production maximization could threaten water security. Worldwide eutrophication intensification is one of the most important causes of the lake water quality deteriorations. Water quality models are usually important decision making tools for policy makers. This study attempts to explore the possibilities of applying the WFE nexus concept into water quality models. We propose the most significant challenge is lack of a common modelling framework to streamline connections between up- and downstream models. As the most important water quality issue, eutrophication modeling should increase its visibility in the United Nations Sustainable Develop Goals.acceptedVersio

    Mixture of tree species enhances stability of soil bacterial community through phylogenetic diversity

    Get PDF
    The composition of tree species might influence microbial diversity considerably, yet investigation of the consequences of changes in diversity on stability of the microbial community is still in its early stages. Understanding how diversity governs community stability is vital for predicting the response of an ecosystem to environmental changes. Phylogenetic diversity (PD) describes the distinct evolution of species in a community, and might be useful for estimating the effects of biodiversity on ecosystem function and stability. High‐throughput 16S rRNA gene sequencing was used to examine soil bacterial phylogenetic distances, phylogenetic diversity and interactions between individuals in five single‐species plantations and three mixed‐species plantations. The plantations were established on the same initial substrate, and sampling was at 68 relatively spatially independent sites. Our results showed that mixed tree species enhanced soil bacterial phylogenetic diversity and community stability, and that phylogenetic diversity had a positive effect on stability of the soil microbial community. We also found evidence that microbial communities characterized by distantly related species with weak interactions were more stable in mixed plantations than communities with strong interactions in single‐species plantations. These results may be explained by the ‘insurance hypothesis’, that large phylogenetic diversity of microbial communities which share different ecological niches insures them against decline in their stability. This is because, even if some microbial species fail to deal with environmental change, others might not necessarily be affected similarly. Our findings demonstrate that phylogenetic diversity is the main controlling factor of the variation in stability across sites and requires more attention in sustainable forest management

    Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations

    Get PDF
    Cotton bollworm (Helicoverpa armigera) poses a global problem, causing substantial economic and ecological losses. Endosymbionts in insects play crucial roles in multiple insect biological processes. However, the interactions between H. armigera and its symbionts have not been well characterized to date. We investigated the symbionts of H. armigera in the whole life cycle from different geographical locations. In the whole life cycle of H. armigera, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level, while Enterococcus, Enterobacter, Glutamicibacter, and Bacillus were the four dominant bacteria at the genus level. Furthermore, high similarity in symbiotic bacterial community was observed in different stages of H. armigera, which were dominated by Enterococcus and Enterobacter. In fields, the dominant bacteria were Proteobacteria and Bacteroidetes, whereas, in the laboratory, the dominant bacteria were Proteobacteria. At the genus level, the dominant bacteria in cotton bollworm eggs of wild populations were Enterobacter, Morganella, Lactococcus, Asaia, Apibacter, and Enterococcus, and the subdominant bacteria were Bartonella, Pseudomonas, and Orbus. Moreover, the symbionts varied with geographical locations, and the closer the geographical distance, the more similar the microbial composition. Taken together, our study identifies and compares the symbiont variation along with geographical gradients and host development dynamic and reveals the high flexibility of microbiome communities in H. armigera, which probably benefits for the successful survival in a complicated changing environment

    Discussion on the construction of food sampling team

    Get PDF
    Compared with the inspection, the sampling work directly faces the food producers and operators, which is more likely to be challenged and even raise objections in terms of standardization, representativeness, impartiality, randomness and timeliness. With the in-depth development of food safety sampling inspection, the requirements for the sampling team increased gradually. This paper discusses the construction of specialized and professional sampling team from the aspects of personnel, management, principle, reward and punishment in order to provide more ideas for relevant work. Through literature collection and comprehensive analysis, this paper combs the current situation and possible problems of China’s food safety sampling team, and proposes the targeted measures. Referring to the construction requirements of food inspection team, clarifying the qualification conditions, establishing the information base of sampling personnel, strengthening assessment and evaluation, and unifying supervision and management can effectively improve the professional skills, responsibility and professional pride of sampling team, and improve the quality and effectiveness of sampling work

    Research progress on detection methods of N-dimethylnitrosamine in foods

    Get PDF
    N-dimethylnitrosamine is one of the most toxic nitrosamine compounds and can be produced in the process of food processing or storage. The detection methods are various with tedious operation and low accuracy. QuEChERS pretreatment combined with GC/LC-MS has been widely used in the determination of N-dimethylnitrosamine in food due to its advantages of simple operation, good extraction and purification, high sensitivity, stable recovery and effective improvement of detection rate and throughput. The pretreatment methods, detection equipment and detection parameters of N-dimethylnitrosamine in food were compared to analyze the advantages and disadvantages of different methods

    Buchnera breaks the specialization of the cotton-specialized aphid (Aphis gossypii) by providing nutrition through zucchini

    Get PDF
    The cotton aphid, Aphis gossypii Glover, is a species of polyphagous aphid with many biotypes, and its host transfer has always been the focus of research on the control of cotton aphid. An important factor affecting aphid specialization is the nutritional association with microbial symbionts that provide the host with nutrients lacking in the diet. We analyzed the microbial composition and biodiversity of reared on zucchini for 10 generations (T1–T10) and cotton as a control (CK), by high-throughput Illumina sequencing of 16S ribosomal RNA genes. The findings showed that the change in plant hosts decreased the richness and variety of microbial species. Regardless of whether the plant host is altered or not, Proteobacteria and Firmicutes are the predominate phyla in cotton-specialized aphid. Additionally, cotton-specialized aphids that live in zucchini had considerably lower relative abundances of non-dominant phyla (Bacteroidetes) than cotton hosts. At the genus level the dominant communities were Buchnera, Acinetobacter, and Arsenophonus. The relative abundance of Buchnera was significantly higher in aphids reared on zucchini than those on cotton, whereas the opposite was observed for Acinetobacter, as well as for some non-dominant communities (Stenotrophomonas, Pseudomons, Flavobacterium, Novosphingobium). Collectively, this study clarifies the dynamic changes of symbiotic bacteria in cotton-specialized aphids reared on zucchini for multiple generations. Among them, Buchnera is crucial for the cotton-specialized aphid to get nutrients during the transfer of the host and has a favorable impact on the colonization of cotton-specialized aphid populations on zucchini hosts. It not only enriches our understanding of the relationship between the bacterial microbiota of aphids and their adaptability to new hosts, zucchini, but also expands the current body of research on the mechanisms underlying the host shifting ability of cotton-specialized aphids

    Sublethal and intergenerational effects of fipronil on Binodoxys communis larvae based on transcriptome sequencing

    Get PDF
    Fipronil is widely used in the agricultural world as an efficient phenylpyrazole insecticide to control pests. Binodoxys communis is a key parasitic natural enemy of major homopteran pests and can successfully control the population of pests such as cotton aphids. It has not yet been studied what effects would sublethal doses of fipronil have on Binodoxys communis larvae. Here, this study evaluated the effect of fipronil on Binodoxys communis larvae and analyze the transcriptome results. The results showed that LC10 (1.19 mg/L) and LC25 (1.73 mg/L) had significant negative effects on the survival rate and parasitism rate of F0 generation. Moreover, exposure to high concentrations (LC25) of fipronil still had obvious passive effect on the F1 generation of Binodoxys communis. These results indicated that sublethal doses of fipronil have malignant effects on the biological functions of parasitoids and their offspring. The results of transcriptome analysis showed that differentially expressed genes (DEGs) of Binodoxys communis after LC10 treatment are mainly related to immunity and detoxification. LC25 treatment instead resulted in changes in the expression of genes related to nutrition, energy and metabolism reactions. Seven of the identified DEGs were selected for real-time fluorescence quantitative PCR analysis. To the best of our knowledge, this is the first report to evaluate the sublethal, intergenerational, and transcriptomic side effects of fipronil on larvae of parasitic natural pest enemies. Our findings provide data to accurately assess the risk of fipronil usage on Binodoxys communis larvae, and provide important theoretical support for the comprehensive prevention and control of natural enemies and pesticides
    corecore