29 research outputs found

    Multistage Sampling and Optimization for Forest Volume Inventory Based on Spatial Autocorrelation Analysis

    Get PDF
    It is important to achieve estimates at the minimum cost, with no greater uncertainty than that which is appropriate for the objectives of the inventory. The aim of this study was to estimate the forest volume efficiently and accurately by sampling and analyzing the existing forest survey data, which is also a technical challenge. In this work, we used the spatial statistics tools in the ArcGIS software to analyze spatial autocorrelations with the data from the sixth to ninth continuous forest inventories (CFI) of Sichuan Province from 2002, 2007, 2012, and 2017. Based on the sampling framework of the CFI, we divided the sampling units into five groups using different methods to create the second-stage samples. Combined with the spatial autocorrelation analysis results, we selected certain samples from the collection of second-stage samples through stratified sampling to form the third-stage sampling units. We applied the sampling ratio, sampling accuracy, workload, and costs as the evaluation indexes for the sampling efficiency analysis. The main results are as follows: Before conversion, the forest volume density had a positively skewed distribution. There was substantial positive spatial autocorrelation, and its intensity was affected by the distance scale, especially at 187.3 km, where the spatial processes of clustering were most pronounced. At the significance level of Ī± = 0.01, the high-volume stands were mainly concentrated in the Aba Prefecture, Garze Prefecture, and Liangshan Prefecture, while the low-volume stands were mainly concentrated in the Sichuan Basin region. The heterogeneous gatherings were staggered between the high-volume areas and low-volume areas, while the transition zone between the three prefecture regions and basin region was randomly distributed. With 95% reliability, the average estimation accuracy of the systematic sampling, random sampling, and cluster sampling in the second stage was 94.09%, which is less accurate than the CFI estimation accuracy. The mean correlation coefficients (R) between the estimated value of the forest volume and the observations of the systematic sampling, random sampling, and cluster sampling in the second stage were 0.95, 0.98, and 0.96, respectively. The relative differences (RD%) were āˆ’0.52, āˆ’0.39, and āˆ’0.36, respectively. The spatial stratified sampling in the third stage, which is based on spatial distribution pattern information, significantly reduced the sampling ratio to 1.68 per 10,000, compared with the average ratios of the CFI sampling and second-stage sampling, which were 13.73 per 10,000 and 2.75 per 10,000, respectively. With 95% reliability, the mean accuracy of the spatial stratified sampling in the third stage was 93.05%, the R was 0.94, and the RD% was āˆ’0.09. Spatial stratified sampling is more in line with the actual work conducted in annual surveys because it effectively reduces the sample size using prior spatial information, which can better meet the requirements of the annual output

    Forest Canopy Cover Inversion Exploration Using Multi-Source Optical Data and Combined Methods

    Get PDF
    An accurate estimation of canopy cover can provide an important basis for forest ecological management by understanding the forest status and change patterns. The aim of this paper is to investigate the four methods of the random forest (RF), support vector regression (SVR), k-nearest neighbor (KNN), and k-nearest neighbor with fast iterative features selection (KNN-FIFS) for modeling forest canopy cover, and to evaluate three mainstream optical data sourcesā€”Landsat8 OLI, Sentinel-2A, Gaofen-1 (GF-1)ā€”and three types of data combined comparatively by selecting the optimal modeling method. The paper uses the Daxinganling Ecological Station of Genhe City, Inner Mongolia, as the research area, and is based on three types of multispectral remote sensing data, extracting spectral characteristics, textural characteristics, terrain characteristics; the Kauthā€“Thomas transform (K-T transform); and color transformation characteristics (HIS). The optimal combination of features was selected using three feature screening methods, namely stepwise regression, RF, and KNN-FIFS, and the four methods: RF, SVR KNN, and KNN-FIFS, were combined to carry out the evaluation analysis regarding the accuracy of forest canopy cover modeling: (1) In this study, a variety of remote sensing features were introduced, and the feature variables were selected by different parameter preference methods and then employed in modeling. Based on the four modeling inversion methods, the KNN-FIFS model achieves the best accuracy: the Landsat8 OLI with R2 = 0.60, RMSE = 0.11, and RMSEr = 14.64% in the KNN-FIFS model; the Sentinel-2A with R2 = 0.80, RMSE = 0.08, and RMSEr = 11.63% in the KNN-FIFS model; the GF-1 with R2 = 0.55, RMSE = 0.12, and RMSEr = 15.04% in the KNN-FIFS model; and the federated data with R2 = 0.82, RMSE = 0.08, and RMSEr = 10.40% in the KNN-FIFS model; (2) the three multispectral datasets have the ability to estimate forest canopy cover, and the modeling accuracy superior under the combination of multi-source data features; (3) under different optical data, KNN- FIFS achieves the best accuracy in the established nonparametric model, and its feature optimization method is better than that of the random forest optimization method. For the same model, the estimation result of the joint data is better than the single optical data; thus, the KNN-FIFS model, with specific parameters, can significantly improve the inversion accuracy and efficiency of forest canopy cover evaluation from different data sources

    Aboveground Biomass Retrieval in Tropical and Boreal Forests Using L-Band Airborne Polarimetric Observations

    Get PDF
    Forests play a crucial part in regulating global climate change since their aboveground biomass (AGB) relates to the carbon cycle, and its changes affect the main carbon pools. At present, the most suitable available SAR data for wall-to-wall forest AGB estimation are exploiting an L-band polarimetric SAR. However, the saturation issues were reported for AGB estimation using L-band backscatter coefficients. Saturation varies depending on forest structure. Polarimetric information has the capability to identify different aspects of forest structure and therefore shows great potential for reducing saturation issues and improving estimation accuracy. In this study, 121 polarimetric decomposition observations, 10 polarimetric backscatter coefficients and their derived observations, and six texture features were extracted and applied for forest AGB estimation in a tropical forest and a boreal forest. A parametric feature optimization inversion model (Multiple linear stepwise regression, MSLR) and a nonparametric feature optimization inversion model (fast iterative procedure integrated into a K-nearest neighbor nonparameter algorithm, KNNFIFS) were used for polarimetric features optimization and forest AGB inversion. The results demonstrated the great potential of L-band polarimetric features for forest AGB estimation. KNNFIFS performed better both in tropical (R2 = 0.80, RMSE = 22.55 Mg/ha, rRMSE = 14.59%, MA%E = 12.21%) and boreal (R2 = 0.74, RMSE = 19.82 Mg/ha, rRMSE = 20.86%, MA%E = 20.19%) forests. Non-model-based polarimetric features performed better compared to features extracted by backscatter coefficients, model-based decompositions, and texture. Polarimetric observations also revealed site-dependent performances

    Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged Stokes-Related Parameters

    No full text
    Accurate and timely knowledge of crop phenology assists in planning and/or triggering appropriate farming activities. The multiple Polarimetric Synthetic Aperture Radar (PolSAR) technique shows great potential in crop phenology retrieval for its characterizations, such as short revisit time, all-weather monitoring and sensitivity to vegetation structure. This study aims to explore the potential of averaged Stokes-related parameters derived from multiple PolSAR data in oilseed rape phenology identification. In this study, the averaged Stokes-related parameters were first computed by two different wave polarimetric states. Then, the two groups of averaged Stokes-related parameters were generated and applied for analyzing averaged Stokes-related parameter sensitivity to oilseed rape phenology changes. At last, decision tree (DT) algorithms trained using 60% of the data were used for oilseed rape phenological stage classification. Four Stokes parameters (g0, g1, g2 and g3) and eight sub parameters (degree of polarization m, entropy H, ellipticity angle Ļ‡, orientation angle Ļ†, degree of linear polarization Dolp, degree of circular polarization Docp, linear polarization ratio Lpr and circular polarization ratio Cpr) were extracted from a multi-temporal RADARSAT-2 dataset acquired during the whole oilseed rape growth cycle in 2013. Their sensitivities to oilseed rape phenology were analyzed versus five main rape phenology stages. In two groups (two different wave polarimetric states) of this study, g0, g1, g2, g3, m, H, Dolp and Lpr showed high sensitivity to oilseed rape growth stages while Ļ‡, Ļ†, Docp and Cpr showed good performance for phenology classification in previous studies, which were quite noisy during the whole oilseed rape growth circle and showed unobvious sensitivity to the cropā€™s phenology change. The DT algorithms performed well in oilseed rape phenological stage identification. The results were verified at the parcel level with left 40% of the point dataset. Five phenology intervals of oilseed rape were identified with no more than three parameters by simple but robust decision tree algorithm groups. The identified phenology stages agree well with the ground measurements; the overall identification accuracies were 71.18% and 79.71%, respectively. For each growth stage, the best performance occurred at stage S1 with the accuracy of 95.65% for Group 1 and 94.23% for Group 2, and the worst performance occurred at stage S3 and S5 with the values around 60%. Most of the classification errors may resulted from the indistinguishability of S3 and S5 using Stokes-related parameters

    Multistage Sampling and Optimization for Forest Volume Inventory Based on Spatial Autocorrelation Analysis

    No full text
    It is important to achieve estimates at the minimum cost, with no greater uncertainty than that which is appropriate for the objectives of the inventory. The aim of this study was to estimate the forest volume efficiently and accurately by sampling and analyzing the existing forest survey data, which is also a technical challenge. In this work, we used the spatial statistics tools in the ArcGIS software to analyze spatial autocorrelations with the data from the sixth to ninth continuous forest inventories (CFI) of Sichuan Province from 2002, 2007, 2012, and 2017. Based on the sampling framework of the CFI, we divided the sampling units into five groups using different methods to create the second-stage samples. Combined with the spatial autocorrelation analysis results, we selected certain samples from the collection of second-stage samples through stratified sampling to form the third-stage sampling units. We applied the sampling ratio, sampling accuracy, workload, and costs as the evaluation indexes for the sampling efficiency analysis. The main results are as follows: Before conversion, the forest volume density had a positively skewed distribution. There was substantial positive spatial autocorrelation, and its intensity was affected by the distance scale, especially at 187.3 km, where the spatial processes of clustering were most pronounced. At the significance level of α = 0.01, the high-volume stands were mainly concentrated in the Aba Prefecture, Garze Prefecture, and Liangshan Prefecture, while the low-volume stands were mainly concentrated in the Sichuan Basin region. The heterogeneous gatherings were staggered between the high-volume areas and low-volume areas, while the transition zone between the three prefecture regions and basin region was randomly distributed. With 95% reliability, the average estimation accuracy of the systematic sampling, random sampling, and cluster sampling in the second stage was 94.09%, which is less accurate than the CFI estimation accuracy. The mean correlation coefficients (R) between the estimated value of the forest volume and the observations of the systematic sampling, random sampling, and cluster sampling in the second stage were 0.95, 0.98, and 0.96, respectively. The relative differences (RD%) were −0.52, −0.39, and −0.36, respectively. The spatial stratified sampling in the third stage, which is based on spatial distribution pattern information, significantly reduced the sampling ratio to 1.68 per 10,000, compared with the average ratios of the CFI sampling and second-stage sampling, which were 13.73 per 10,000 and 2.75 per 10,000, respectively. With 95% reliability, the mean accuracy of the spatial stratified sampling in the third stage was 93.05%, the R was 0.94, and the RD% was −0.09. Spatial stratified sampling is more in line with the actual work conducted in annual surveys because it effectively reduces the sample size using prior spatial information, which can better meet the requirements of the annual output

    Three-Step Semi-Empirical Radiometric Terrain Correction Approach for PolSAR Data Applied to Forested Areas

    No full text
    In recent decades, most methods proposed for radiometric slope correction involved the backscattering intensity values in synthetic aperture radar (SAR) data. However, these methods are not fully applicable to quad-polarimetric SAR (PolSAR) matrix data. In this paper, we propose a three-step semi-empirical radiometric terrain correction approach for PolSAR forest area data. The three steps of terrain effects correction are: polarisation orientation angle (POA), effective scattering area (ESA), and angular variation effect (AVE) corrections. We propose a novel method to determine adaptively the ā€œnā€ value in the third step by minimising the correlation coefficient between corrected backscattering coefficients and the local incidence angle; we then constructed the correction coefficients matrix and used it to correct PolSAR matrix data. PALSAR-2 HBQ (L-band, quad-polarisation) data were used to verify the proposed method. After three-step correction, differences between front and back slopes were significantly reduced. Our results indicate that POA, ESA, and AVE corrections are indispensable steps to producing PolSAR data. In the POA correction step, horizontalā€“vertical (HV) polarisation was maximally influenced by the POA shift. The max deviation of the POA correction was greater than 1 dB for HV polarisation and approximately 0.5 dB for HH/VV polarisation at an intermediate shift angle (Ā±20Ā°). Based on Light Detection and Ranging (LiDAR)-derived forest aboveground biomass (AGB) data, we analysed the relationship between forest AGB and backscattering coefficient; the correlation was improved following the terrain correction. HV polarisation had the best correlation with forest AGB (R = 0.81) and the correlation improved by approximately 0.3 compared to the uncorrected data

    Forest Total and Component Above-Ground Biomass (AGB) Estimation through C- and L-band Polarimetric SAR Data

    No full text
    Forest biomass plays an essential role in forest carbon reservoir studies, biodiversity protection, forest management, and climate change mitigation actions. Synthetic Aperture Radar (SAR), especially the polarimetric SAR with the capability of identifying different aspects of forest structure, shows great potential in the accurate estimation of total and component forest above-ground biomass (AGB), including stem, bark, branch, and leaf biomass. This study aims to fully explore the potential of polarimetric parameters at the C- and L-bands to achieve high estimation accuracy and improve the estimation of AGB saturation levels. In this study, the backscattering coefficients at different polarimetric channels and polarimetric parameters extracted from Freeman2, Yamaguchi3, H-A-Alpha, and Target Scattering Vector Model (TSVM) decomposition methods were optimized by a random forest algorithm, first, and then inputted into linear regression models to estimate the total forest AGB and biomass components of two test sites in China. The results showed that polarimetric observations had great potential in total and component AGB estimation in the two test sites; the best performances were for leaves at test site I, with R2 = 0.637 and RMSE = 1.27 t/hm2. The estimation of biomass components at both test sites showed obvious saturation phenomenon estimation according to their scatter plots. The results obtained at both test sites demonstrated the potential of polarimetric parameters in total and component biomass estimation

    GSK3Ī²-Dzip1-Rab8 cascade regulates ciliogenesis after mitosis.

    No full text
    The primary cilium, which disassembles before mitotic entry and reassembles after mitosis, organizes many signal transduction pathways that are crucial for cell life and individual development. However, how ciliogenesis is regulated during the cell cycle remains largely unknown. Here we show that GSK3Ī², Dzip1, and Rab8 co-regulate ciliogenesis by promoting the assembly of the ciliary membrane after mitosis. Immunofluorescence and super-resolution microscopy showed that Dzip1 was localized to the periciliary diffusion barrier and enriched at the mother centriole. Knockdown of Dzip1 by short hairpin RNAs led to failed ciliary localization of Rab8, and Rab8 accumulation at the basal body. Dzip1 preferentially bound to Rab8GDP and promoted its dissociation from its inhibitor GDI2 at the pericentriolar region, as demonstrated by sucrose gradient centrifugation of purified basal bodies, immunoprecipitation, and acceptor-bleaching fluorescence resonance energy transfer assays. By means of in vitro phosphorylation, in vivo gel shift, phospho-peptide identification by mass spectrometry, and GST pulldown assays, we demonstrated that Dzip1 was phosphorylated by GSK3Ī² at S520 in G0 phase, which increased its binding to GDI2 to promote the release of Rab8GDP at the cilium base. Moreover, ciliogenesis was inhibited by overexpression of the GSK3Ī²-nonphosphorylatable Dzip1 mutant or by disabling of GSK3Ī² by specific inhibitors or knockout of GSK3Ī² in cells. Collectively, our data reveal a unique cascade consisting of GSK3Ī², Dzip1, and Rab8 that regulates ciliogenesis after mitosis

    Segmentation of multi-temporal polarimetric SAR data based on mean-shift and spectral graph partitioning

    No full text
    Abstract Polarimetric SAR (PolSAR) image segmentation is a key step in its interpretation. For the targets with time series changes, the single-temporal PolSAR image segmentation algorithm is difficult to provide correct segmentation results for its target recognition, time series analysis and other applications. For this, a new algorithm for multi-temporal PolSAR image segmentation is proposed in this paper. Firstly, the over-segmentation of single-temporal PolSAR images is carried out by the mean-shift algorithm, and the over-segmentation results of single-temporal PolSAR are combined to get the over-segmentation results of multi-temporal PolSAR images. Secondly, the edge detectors are constructed to extract the edge information of single-temporal PolSAR images and fuse them to get the edge fusion results of multi-temporal PolSAR images. Then, the similarity measurement matrix is constructed based on the over-segmentation results and edge fusion results of multi-temporal PolSAR images. Finally, the normalized cut criterion is used to complete the segmentation of multi-temporal PolSAR images. The performance of the proposed algorithm is verified based on three temporal PolSAR images of Radarsat-2, and compared with the segmentation algorithm of single-temporal PolSAR image. Experimental results revealed the following findings: (1) The proposed algorithm effectively realizes the segmentation of multi-temporal PolSAR images, and achieves ideal segmentation results. Moreover, the segmentation details are excellent, and the region consistency is good. The objects which canā€™t be distinguished by the single-temporal PolSAR image segmentation algorithm can be segmented. (2) The segmentation accuracy of the proposed multi-temporal algorithm is up to 86.5%, which is significantly higher than that of the single-temporal PolSAR image segmentation algorithm. In general, the segmentation result of proposed algorithm is closer to the optimal segmentation. The optimal segmentation of farmland parcel objects to meet the needs of agricultural production is realized. This lays a good foundation for the further interpretation of multi-temporal PolSAR image

    Compact Polarimetric Response of Rape (Brassica napus L.) at C-Band: Analysis and Growth Parameters Inversion

    No full text
    Growth parameters like biomass, leaf area index (LAI) and stem height play an import role for crop monitoring and yield prediction. Compact polarimetric (CP) SAR has shown great potential and similar performance to fully-polarimetric (FP) SAR in crop mapping and phenology retrieval, but its potential in growth parameters inversion has not been fully explored. In this paper, a time series of images of CP SAR was simulated from five FP SAR data gathered during the entire growth season of rape. CP response of 27 parameters, relying on Stokes parameters and their child parameters, decomposition parameters and backscattering coefficients, were extracted and investigated as a function of days after sowing (DAS) during the whole rape growth cycle to interpret their sensitivity to each growth parameter. Then, random forest (RF) was chosen as an automatic approach for the growth parameters inversion method, and its results were compared with traditional single-parameter regression models. Most of the CP parameters showed high sensitivity with growth parameters and great potential for growth parameters inversion. Among all of the regression models, the quadratic regression model showed the best performance for all of the growth parameters inversion, the best result for biomass inversion was the third component of the Stokes parameters (g3) with R2 of 0.765 and RMSE of 73.20 g/m2. For LAI and stem height was one of the Stokes child parameters, the circular polarization ratio (Uc), with R2 of 0.857 and 0.923 and RMSE of 0.66 and 18.71 cm, respectively. RF showed the highest accuracy and smallest RMSE for all of three growth parameters inversion; R2 for biomass, LAI and stem height were 0.93, 0.96 and 0.95, respectively; RMSE were 46.24 g/m2, 0.25 and 13.5 cm, respectively. However, there are also some CP parameters, which showed low sensitivity to growth parameters, that had high importance for RF inversion. The results confirmed the potential of CP data and the RF method in growth parameters inversion, but they also confirmed that it was difficult to give a physical interpretation for the RF inversion model
    corecore