175 research outputs found

    Generalized gene co-expression analysis via subspace clustering using low-rank representation

    Get PDF
    BACKGROUND: Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for finding novel biologically meaningful modules. RESULTS: We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions than current GCNA methods and find gene modules with prognostic values. CONCLUSIONS: The presented method takes advantage of subspace clustering to generate gene co-expression networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms

    Prediction of nonlinear interface dynamics in the unidirectional freezing of particle suspensions with rigid compacted layer

    Full text link
    Water freezing in particle suspensions widely exists in nature. As a typical physical system of free boundary problem, the spatiotemporal evolution of the solid/liquid interface not only origins from phase transformation but also from permeation flow in front of ice. Physical models have been proposed in previous efforts to describe the interface dynamic behaviors in unidirectional freezing of particle suspensions. However, there are several physical parameters difficult to be determined in previous investigations dedicated to describing the spatiotemporal evolution in unidirectional freezing of particle suspensions. Here, based on the fundamental momentum theorem, we propose a consistent theoretical framework to address the unidirectional freezing process in the particle suspensions coupled with the effect of water permeation. An interface undercooling-dependent pushing force exerted on the compacted layer with a specific formula is derived based on the surface tension. Then a dynamic compacted layer is considered and analyzed. Numerical solutions of the nonlinear models reveal the dependence of system dynamics on some typical physical parameters, particle radius, initial particle concentration in the suspensions, freezing velocity and so on. The system dynamics are characterized by interface velocity, interface undercooling and interface recoil as functions of time. The models allow us to reconsider the formation mechanism of ice spears in freezing of particle suspensions in a simpler but novel way, with potential implications for both understanding and controlling not only ice formation in porous media but also crystallization processes in other complex systems

    Federated Learning with Reduced Information Leakage and Computation

    Full text link
    Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. In this paper, we introduce Upcycled-FL, a novel federated learning framework with first-order approximation applied at every even iteration. Under this framework, half of the FL updates incur no information leakage and require much less computation. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL, and then apply perturbation mechanisms to preserve privacy. Experiments on real-world data show that Upcycled-FL consistently outperforms existing methods over heterogeneous data, and significantly improves privacy-accuracy trade-off while reducing 48% of the training time on average

    The effect of reading engagement on scientific literacy – an analysis based on the XGBoost method

    Get PDF
    Scientific literacy is a key factor of personal competitiveness, and reading is the most common activity in daily learning life, and playing the influence of reading on individuals day by day is the most convenient way to improve the level of scientific literacy of all people. Reading engagement is one of the important student characteristics related to reading literacy, which is highly malleable and is jointly reflected by behavioral, cognitive, and affective engagement, and it is of theoretical and practical significance to explore the relationship between reading engagement and scientific literacy using reading engagement as an entry point. In this study, we used PISA2018 data from China to explore the relationship between reading engagement and scientific literacy with a sample of 15-year-old students in mainland China. 36 variables related to reading engagement and background variables (gender, grade, and socioeconomic and cultural status of the family) were selected from the questionnaire as the independent variables, and the score of the Scientific Literacy Assessment (SLA) was taken as the outcome variable, and supervised machine learning method, the XGBoost algorithm, to construct the model. The dataset is randomly divided into training set and test set to optimize the model, which can verify that the obtained model has good fitting degree and generalization ability. Meanwhile, global and local personalized interpretation is done by introducing the SHAP value, a cutting-edge machine model interpretation method. It is found that among the three major components of reading engagement, cognitive engagement is the more influential factor, and students with high reading cognitive engagement level are more likely to get high scores in scientific literacy assessment, which is relatively dominant in the model of this study. On the other hand, this study verifies the feasibility of the current popular machine learning model, i.e., XGBoost, in a large-scale international education assessment program, with a better model adaptability and conditions for global and local interpretation

    TENSILE: A Tensor granularity dynamic GPU memory scheduling method towards multiple dynamic workloads system

    Full text link
    Recently, deep learning has been an area of intense research. However, as a kind of computing-intensive task, deep learning highly relies on the scale of GPU memory, which is usually prohibitive and scarce. Although there are some extensive works have been proposed for dynamic GPU memory management, they are hard to be applied to systems with multiple dynamic workloads, such as in-database machine learning systems. In this paper, we demonstrated TENSILE, a method of managing GPU memory in tensor granularity to reduce the GPU memory peak, considering the multiple dynamic workloads. TENSILE tackled the cold-starting and across-iteration scheduling problem existing in previous works. We implement TENSILE on a deep learning framework built by ourselves and evaluated its performance. The experiment results show that TENSILE can save more GPU memory with less extra time overhead than prior works in both single and multiple dynamic workloads scenarios

    Complex relationship between gut microbiota and thyroid dysfunction: a bidirectional two-sample Mendelian randomization study

    Get PDF
    BackgroundMany studies have reported the link between gut microbiota and thyroid dysfunction. However, the causal effect of gut microbiota on thyroid dysfunction and the changes in gut microbiota after the onset of thyroid dysfunction are not clear.MethodsA two-sample Mendelian randomization (MR) study was used to explore the complex relationship between gut microbiota and thyroid dysfunction. Data on 211 bacterial taxa were obtained from the MiBioGen consortium, and data on thyroid dysfunction, including hypothyroidism, thyroid-stimulating hormone alteration, thyroxine deficiency, and thyroid peroxidase antibodies positivity, were derived from several databases. Inverse variance weighting (IVW), weighted median, MR-Egger, weighted mode, and simple mode were applied to assess the causal effects of gut microbiota on thyroid dysfunction. Comprehensive sensitivity analyses were followed to validate the robustness of the results. Finally, a reverse MR study was conducted to explore the alteration of gut microbiota after hypothyroidism onset.ResultsOur bidirectional two-sample MR study revealed that the genera Intestinimonas, Eubacterium brachy group, Ruminiclostridium5, and Ruminococcaceae UCG004 were the risk factors for decreased thyroid function, whereas the genera Bifidobacterium and Lachnospiraceae UCG008 and phyla Actinobacteria and Verrucomicrobia were protective. The abundance of eight bacterial taxa varied after the onset of hypothyroidism. Sensitivity analysis showed that no heterogeneity or pleiotropy existed in the results of this study.ConclusionThis novel MR study systematically demonstrated the complex relationship between gut microbiota and thyroid dysfunction, which supports the selection of more targeted probiotics to maintain thyroid–gut axis homeostasis and thus to prevent, control, and reverse the development of thyroid dysfunction

    FairNN- Conjoint Learning of Fair Representations for Fair Decisions

    Get PDF
    In this paper, we propose FairNN a neural network that performs joint feature representation and classification for fairness-aware learning. Our approach optimizes a multi-objective loss function in which (a) learns a fair representation by suppressing protected attributes (b) maintains the information content by minimizing a reconstruction loss and (c) allows for solving a classification task in a fair manner by minimizing the classification error and respecting the equalized odds-based fairness regularized. Our experiments on a variety of datasets demonstrate that such a joint approach is superior to separate treatment of unfairness in representation learning or supervised learning. Additionally, our regularizers can be adaptively weighted to balance the different components of the loss function, thus allowing for a very general framework for conjoint fair representation learning and decision making.Comment: Code will be availabl
    • …
    corecore