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Complex relationship between
gut microbiota and thyroid
dysfunction: a bidirectional
two-sample Mendelian
randomization study

Xiao Liu, Jingyu Liu, Tongxin Zhang, Qian Wang*

and Huawei Zhang*

Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, Shandong, China
Background: Many studies have reported the link between gut microbiota and

thyroid dysfunction. However, the causal effect of gut microbiota on thyroid

dysfunction and the changes in gut microbiota after the onset of thyroid

dysfunction are not clear.

Methods: A two-sample Mendelian randomization (MR) study was used to

explore the complex relationship between gut microbiota and thyroid

dysfunction. Data on 211 bacterial taxa were obtained from the MiBioGen

consortium, and data on thyroid dysfunction, including hypothyroidism,

thyroid-stimulating hormone alteration, thyroxine deficiency, and thyroid

peroxidase antibodies positivity, were derived from several databases. Inverse

variance weighting (IVW), weighted median, MR-Egger, weighted mode, and

simple mode were applied to assess the causal effects of gut microbiota on

thyroid dysfunction. Comprehensive sensitivity analyses were followed to

validate the robustness of the results. Finally, a reverse MR study was

conducted to explore the alteration of gut microbiota after hypothyroidism

onset.

Results: Our bidirectional two-sample MR study revealed that the genera

Intestinimonas, Eubacterium brachy group, Ruminiclostridium5, and

Ruminococcaceae UCG004 were the risk factors for decreased thyroid

function, whereas the genera Bifidobacterium and Lachnospiraceae UCG008

and phyla Actinobacteria and Verrucomicrobia were protective. The abundance

of eight bacterial taxa varied after the onset of hypothyroidism. Sensitivity analysis

showed that no heterogeneity or pleiotropy existed in the results of this study.
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Conclusion: This novel MR study systematically demonstrated the complex

relationship between gut microbiota and thyroid dysfunction, which supports

the selection of more targeted probiotics to maintain thyroid–gut axis

homeostasis and thus to prevent, control, and reverse the development of

thyroid dysfunction.
KEYWORDS

Mendelian randomization, thyroid dysfunction, hypothyroidism, gut microbiota,
thyroid-gut axis
Introduction

Thyroid dysfunction stands as one of the prevailing endocrine

diseases, and hypothyroidism is one of its main types, affecting

approximately 5% of the general population (1). Thyroid hormones

exert their influence selectively on multiple organs and tissues.

Hypothyroidism, a representation of thyroid dysfunction, exhibits

strong associations with cardiovascular diseases (2), diabetes (3),

and thromboembolism (4), among other conditions. Recent

epidemiological studies globally have unveiled a significant

correlation between hypothyroidism and elevated mortality

rates (5). Hypothyroidism can arise due to factors such as

iodine deficiency, medications, radiation therapy, immune

system abnormalities, and pregnancy. Once established,

reversing hypothyroidism poses significant challenges. Among

these triggers, autoimmune hypothyroidism proves especially

problematic, given its enduring nature. Hence, exploring

autoimmune hypothyroidism demands comprehensive analysis

from diverse angles. It necessitates in-depth research to uncover

treatments beyond lifelong thyroxine administration. These

treatments should not only impede the disease’s progression but

also enhance patients’ quality of life significantly.

The human gut microbiota boasts unparalleled diversity and

complexity among all human organs, with its composition

intricately linked to ethnicity, dietary habits, and geographic

location (6). Variations in gut microbiota among healthy

individuals from diverse backgrounds pose a challenge in

establishing a definitive healthy baseline. This microbiota actively

participates in the fundamental physiological functions and diseases

within the human body, including nutrient production,

metabolic balance, immune response, brain behavior, and

inflammatory reactions (7). Moreover, it plays a pivotal role in

several endocrine diseases, notably diabetes (8) and polycystic ovary

syndrome (9). The evolving recognition of the interconnection

between gut microbiota and thyroid function is denoted as the

thyroid–gut axis (10, 11). Dysbiosis in the gut microbiota has been

evidenced to disrupt the absorption of iodine and to impact the

synthesis and release of thyroid hormones (12). Researchers have

explored this relationship, achieving compelling results by

modulating gut microbiota in mouse models and clinical cases of

thyroid dysfunction (13–16). For instance, hyperthyroidism

correlates with increased Actinobacteria and decreased
02
Bacteroidetes, whereas specific strains of Bifidobacterium and

Lactobacillus were found to interact with human autoantibodies,

disrupting thyroid function (14, 17). Clinical study has also

linked severe hypothyroidism to higher instances of small

intestinal bacterial overgrowth, contributing to gastrointestinal

symptoms (18).

Although these studies have indicated associations between gut

microbiota and thyroid dysfunction, causality remains elusive in

traditional observational studies due to confounding and reverse

causation, which can lead to biased conclusions. A bidirectional

two-sample Mendelian randomization (MR) study presents an

innovative method for studying the causal effects between

environmental exposures and diseases, or between two diseases,

akin to a randomized controlled trial (RCT) (19). MR employs

single-nucleotide polymorphisms (SNPs) in genes as instrumental

variables (IVs), effectively circumventing confounding factors, and

provides statistically significant causal effects by combining SNPs

from genome-wide association studies (GWASs) of exposure and

outcome (20, 21). It allows for better modeling of random

assignment, thereby reducing bias in observational studies and

better inferring causality. Although MR has been applied broadly

to investigate the gut microbiota’s role in diseases like cancers and

autoimmune disorders, its application to thyroid dysfunction

remains unexplored (22–24). Therefore, we conducted this

bidirectional two-sample MR study utilizing thyroid function–

related GWAS data from the international consortia, including

the MiBioGen consortium, FinnGen consortium, MRC IEU

OpenGWAS project, and ThyroidOmics. In this study, the

application of two-sample MR involved the utilization of two

distinct, independent European samples for analysis. This

approach was employed to mitigate the potential biases associated

with a single sample, thereby enhancing the reliability and

generalizability of our findings. Furthermore, we used the

bidirectional MR that simultaneously considered two different

causal directions between the gut microbiota and autoimmune

hypothyroidism, thus providing for a more nuanced

understanding of the bidirectional causal relationship between

them. This comprehensive MR analysis, to our knowledge, marks

the first exploration of the association between gut microbiota and

thyroid function. These results can determine the bidirectional

causal effect between the gut microbiota and thyroid dysfunction

and thus guide the regulation of the thyroid–gut axis.
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Methods

Study design

The study’s flowchart is depicted in Figure 1. To investigate the

interplay between gut microbiota and thyroid dysfunction, we selected

gut microbiota as the exposure and thyroid function–related factors as

outcomes. MR study adhered to three key assumptions: (1) IVs selected

from datasets were linked to exposure; (2) they were unrelated to

unidentified exposure confounders; and (3) they influenced outcomes

exclusively through exposure pathways (25). SNPs served as valid IVs

in the MR study to evaluate the bidirectional causal relationship

between exposure and outcome.
Data sources

All data utilized in this study were sourced from diverse GWASs.

Regarding thyroid function, the GWASs focused on hypothyroidism,

thyroid-stimulating hormone (TSH), thyroxine deficiency, and thyroid

peroxidase antibodies (TPOAb) positivity except for gut microbiota

data. For the gut microbiota analysis, we extracted the relevant genetic

IVs from a comprehensive GWAS dataset provided by the MiBioGen

consortium. This dataset was composed of 18,340 participants,

primarily of European descent (n = 13,266), and comprised a total of

5,717,754 SNPs after imputation (21). The MiBioGen GWAS

amalgamated outcomes from 16S ribosomal RNA gene sequencing

effectively eliminated potential batch effects. In total, the dataset

contained information on 211 taxa, including 131 genera, 35

families, 20 orders, 16 classes, and nine phyla. As for the thyroid

function investigation, the genetic IVs were acquired from the FinnGen

consortium (26), MRC IEU OpenGWAS project (27), and

ThyroidOmics consortium (28), respectively. The details of each

database are summarized in Table 1.
Instrumental variables selection

To infer an accurate and realistic bidirectional causal effect

between gut microbiota and hypothyroidism risk, we performed a
Frontiers in Endocrinology 03
rigorous quality control to select the best IVs. First, we screened

SNPs associated with each bacterial taxon using a mild p-value of 1

× 10−5. Then, linkage disequilibrium analysis was used to select

independent IVs for each bacterial taxon to prevent biased causal

estimates. We selected the most suitable parameters for clustering

(R2 < 0.01 and clustering distance = 500 kb) to evaluate the linkage

disequilibrium among the included SNPs. The population was

framed as European. Missing SNPs from bacterial taxa in thyroid

dysfunction–related datasets were replaced with proxy SNPs (R2 >

0.8). Palindromic SNPs were excluded to prevent coding

distortions. The F-statistic was calculated to detect the presence of

weak IV instrument bias. When the F-statistic is greater than 10, it

indicates that there is no weak instrument bias.
MR analysis

Five widely used MR methods were employed to detect the

bidirectional causal relationships between exposure and outcome,

encompassing inverse variance weighting (IVW), weighted median,

MR-Egger, weighted mode, and simple mode (29–32). IVWmethod

estimates the causal effect of exposure on the outcome by

integrating ratio estimates for each SNP, and it was chosen as the

primary method because it can provide a robust and unbiased

causal effect when no polymorphism or heterogeneity is found (33).

The weighted median method correctly estimates causality when up

to 50% of the IVs are invalid (30). MR-Egger method is based on the

assumption that instrument strengths are independent of direct

effects and thereby allows calibration of pleiotropy and calculation

of causal inferences, even if all genetic variants are polymorphic

(34). If this assumption is violated, then the weighted model method

would have greater power to detect causal effects and produce less

bias than the MR-Egger method (34). Finally, the simple model

method is an unweighted model of the experienced density function

for causal estimation (35). A positive causal effect was affirmed if the

IVW results were significant (p < 0.05) and beta values from other

methods concurred in direction. Wald radio method was used to

estimate the causal effect of exposure on the outcome when there

was only one SNP, which was the simplest calculation method (36).

Then, we further visualized the results of the five MR methods. The
Confounds

Instrumental

Gut microbiota Thyroid 
dysfunction

variables (SNPs)
Instrumental

variables (SNPs)

FIGURE 1

Schematic representation of the bidirectional two-sample MR study. The arrows show three key assumptions for instrumental variables commonly
required in MR studies, and the crosses represent possible ways that the assumptions could be violated. SNP, single-nucleotide polymorphism.
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bidirectional causal effect was expressed as an odds ratio (OR)

calculated from MR analysis. Notably, to obtain more IVs, we did

not reach the traditionally strict significance threshold (p < 5 ×

10−8) for exposure to gut microbiota. Thus, a false discovery rate

(FDR) was corrected for multiple comparisons by the Benjamin–

Hochberg method to limit the possibility of false positives, and the

threshold was set at 0.05. The bidirectional causal effect was

considered significant when p < 0.05 and FDR < 0.05 (37).
Sensitivity analyses

Several basic sensitivity analyses were used to validate the

results. Cochran ’s Q statistic was employed to assess

heterogeneity among IVs. The heterogeneity should be noted if

it exists between different IVs (p < 0.05) (38). Horizontal

pleiotropy indicates that IVs are associated with the outcome

through pathways other than causal effects, potentially leading to

false positive results (p < 0.05). MR pleiotropy residual sum and

outlier (MR-PRESSO) analysis was also used to validate the

potential pleiotropy of the direct effect between the selected

IVs and the outcome. Subsequently, we applied the leave-

one-out method to exclude each SNP from the IVs ,

evaluatingwhether individual SNPs significantly influenced

causal effects using the IVW method. All the above analyses

were done using two-sample MR and MR-PRESSOR R packages

(35, 39).
Reverse MR analysis

To investigate alterations of gut microbiota following the onset

of hypothyroidism, we conducted a reverse MR analysis, treating

hypothyroidism as the exposure and gut microbiota as the outcome.

The threshold of significance level for IVs was adjusted to be more

accurate (p < 5 × 10−8). The procedure for the reverse MR analysis

was the same as the MR analysis described above.
Frontiers in Endocrinology 04
Results

Causal effects of gut microbiota
on thyroid dysfunction

A total of 14,405 SNPs associated with the gut microbiota were

meticulously curated following a rigorous screening process. Through

robust linkage disequilibrium clustering and coordination, each

bacterial taxon was linked to a varied range of IVs, spanning from 3

to 22. Notably, the F-statistic for all SNPs surpassed 10, indicating the

absence of weak instrumental bias in the dataset.

After FDR correction, a meticulous analysis targeted three phyla

and seven genera of bacteria taxa, revealing their causal effects on

thyroid dysfunction via MR analysis. Six were linked to

hypothyroidism, one to alterations in TSH levels, and three to

TPOAb positivity (Figure 2). The IVW estimate pointed toward the

genera Intestinimonas (OR = 1.120, p = 0.014) and Ruminiclostridium5

(OR = 1.189, p = 0.011) as the risk factors for hypothyroidism. In

contrast, genera Bifidobacterium (OR = 0.877, p = 0.011) and

Lachnospiraceae UCG008 (OR = 0.871, p = 0.002) and phyla

Actinobacteria (OR = 0.827, p = 0.001) and Verrucomicrobia (OR =

0.876, p = 0.012) emerged as the protective factors against

hypothyroidism. Moreover, phylum Bacteroidetes displayed an

association with reduced TSH levels (OR = 0.711, p = 0.010). Three

bacterial genera exhibited potential causal effects on TPOAb positivity:

genus Anaerotruncus (OR = 0.291, p = 0.025) reduced TPOAb

positivity, whereas genera Eubacterium brachy group (OR = 1.744, p

= 0.034) and Ruminococcaceae UCG004 (OR = 2.193, p = 0.033)

increased TPOAb positivity, as indicated by the IVW method.

Intriguingly, no bacteria demonstrated a significant causal

relationship with thyroxine deficiency. Rigorous sensitivity analyses

revealed the absence of heterogeneity and pleiotropy in the identified

causal effects (Supplementary Table 1). Furthermore, the leave-one-out

method demonstrated the absence of outlier SNPs in all selected

bacteria taxa. Regrettably, this method could not be performed due

to the limited number of SNPs associated with TPOAb as the

outcome (Figure 3).
TABLE 1 Data sources used in the bidirectional two-sample MR study.

Data Trait Year Consortium Ancestry
Sample
size

Number of
SNPs

Gut microbiomes Gut microbiota abundance 2021 MiBioGen consortium European 13,266 5,717,754

Hypothyroidism Hypothyroidism, strict autoimmune 2021 FinnGen consortium European 198,472 16,380,353

TSH alteration Thyroid-stimulating hormone 2018
MRC IEU OpenGWAS
project European 3,301 10,534,735

Thyroxine
deficiency

Medication code: levothyroxine
sodium 2018

MRC IEU OpenGWAS
project European 462,933 9,851,867

TPOAb positivity
Thyroid peroxidase antibodies’
positivity 2014 ThyroidOmics consortium European 18,297 10,485,757
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Causal effects of thyroid dysfunction on
the gut microbiota

In the reverse MR analysis, 56 SNPs linked with hypothyroidism

were identified. Each bacterial taxon was linked to a minimum of 3

and a maximum of 36 IVs, all exhibiting robustness (F-statistic > 10).
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Applying the IVW method in the MR analysis, it was observed that

class Negativicutes (OR = 1.039, p = 0.048) , family

Christensenellaceae (OR = 1.065, p = 0.030), genera Eubacterium

ruminantium group (OR = 1.057, p = 0.042) and Ruminococcaceae

UCG005 (OR = 1.047, p = 0.025), and order Selenomonadales (OR =

1.039, p = 0.048) exhibited upregulation following the onset of
eulav-pROPNSndohteMemoctuOerusopxE

genus Bifidobacterium Hypothyroidism MR Egger 17 0.819 (0.620-1.082) 0.180

Weighted median 17 0.820 (0.731-0.921) 0.001

IVW 17 0.877 (0.793-0.970) 0.011

Simple mode 17 0.843 (0.687-1.035) 0.122

Weighted mode 17 0.815 (0.716-0.928) 0.007

genus Intestinimonas Hypothyroidism MR Egger 16 1.045 (0.811-1.346) 0.738

Weighted median 16 1.096 (0.971-1.236) 0.138

16 1.120 (1.023-1.226) 0.014

Simple mode 16 1.059 (0.861-1.301) 0.596

Weighted mode 16 1.098 (0.891-1.352) 0.395

genus Lachnospiraceae UCG008 Hypothyroidism MR Egger 11 0.566 (0.370-0.867) 0.028

Weighted median 11 0.904 (0.805-1.016) 0.090

11 0.871 (0.798-0.950) 0.002

Simple mode 11 0.919 (0.744-1.136) 0.453

Weighted mode 11 0.926 (0.759-1.130) 0.468

genus Ruminiclostridium5 Hypothyroidism MR Egger 11 1.053 (0.600-1.847) 0.861

Weighted median 11 1.262 (1.051-1.515) 0.013

11 1.189 (1.040-1.361) 0.011

Simple mode 11 1.323 (0.948-1.845) 0.131

Weighted mode 11 1.340 (0.948-1.894) 0.128

phylum Actinobacteria Hypothyroidism MR Egger 17 0.560 (0.363-0.865) 0.020

Weighted median 17 0.748 (0.642-0.871) 0.000

17 0.827 (0.738-0.926) 0.001

Simple mode 17 0.744 (0.570-0.972) 0.045

Weighted mode 17 0.737 (0.608-0.892) 0.007

phylum Verrucomicrobia Hypothyroidism MR Egger 12 0.881 (0.672-1.155) 0.381

Weighted median 12 0.889 (0.773-1.021) 0.095

12 0.876 (0.790-0.971) 0.012

Simple mode 12 0.943 (0.756-1.176) 0.611

Weighted mode 12 0.907 (0.747-1.102) 0.347

phylum Bacteroidetes TSH MR Egger 12 0.562 (0.326-0.970) 0.065

Weighted median 12 0.701 (0.486-1.011) 0.057

12 0.711 (0.549-0.921) 0.010

Simple mode 12 0.633 (0.369-1.084) 0.124

Weighted mode 12 0.662 (0.419-1.047) 0.106

genus Anaerotruncus TPOAb 2 0.291 (0.099-0.859) 0.025

genus Eubacterium brachy group TPOAb 2 1.744 (1.042-2.918) 0.034

genus Ruminococcaceae UCG004 TPOAb 2 2.193 (1.066-4.511) 0.033

0.2 0.6 1.0 1.4 1.8 2.9 4.5

Hazard Ratio(95%CI)

IVW

IVW

IVW

IVW

IVW

IVW

IVW
IVW

IVW

FIGURE 2

Forest plot for the causal effect of gut microbiota on thyroid dysfunction by the five MR methods. The error bar represents the 95% confidence
interval of hazard ratio. The red dot represents an outcome of hypothyroidism, the green represents an outcome of TSH alteration, and the blue
represents an outcome of TPOAb positivity. nSNP, number of SNPs; OR, odds ratio; MR, Mendelian randomization; IVW, inverse variance weighted.
B C D

E F G

A

FIGURE 3

Leave-one-out plots for the causal effect of gut microbiota on thyroid dysfunction. The red line is the random effect of the IVW method, and the
error bar represents the 95% confidence interval with the IVW method. (A) Genus Bifidobacterium, (B) genus Intestinimonas, (C) genus
Lachnospiraceae UCG008, (D) genus Ruminiclostridium5, (E) phylum Actinobacteria, (F) phylum Verrucomicrobia, and (G) phylum Bacteroidetes.
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hypothyroidism. Conversely, class Verrucomicrobiae (OR = 0.954, p

= 0.029), family Verrucomicrobiaceae (OR = 0.954, p = 0.024), order

Verrucomicrobiales (OR = 0.954, p = 0.029), phylum

Verrucomicrobia (OR = 0.954, p = 0.024), and genera Akkermansia

(OR = 0.954, p = 0.029) and Erysipelotrichaceae UCG003 (OR =

0.906, p = 0.033) were downregulated subsequent to the onset of

hypothyroidism (Figure 4). Rigorous sensitivity analyses confirmed

the absence of heterogeneity or horizontal pleiotropy in the

aforementioned causal effects (Supplementary Table 2). In addition,

leave-one-out analysis did not reveal any SNPs driving the causal

effect of hypothyroidism on gut microbiota (Figure 5).
Discussion

Thyroid dysfunction has emerged as a global public health

concern. Advancements in scientific inquiry have delved deeper

into gut microbiota research, particularly in its connection to

thyroid function via the thyroid–gut axis, a burgeoning area of

interest (1, 40). Hypothyroidism, a prevalent condition stemming

from thyroid dysfunction, exhibits multifaceted and poorly

understood causes. Beyond external causes such as iodine

deficiency, medications, and surgery, autoimmune origins

constitute the bulk of primary hypothyroidism, posing significant
Frontiers in Endocrinology 06
challenges for explanation and management (41). Gut microbiota

serves as the linchpin for stable intestinal lymphoid tissue function,

acting as a vital shield in immune homeostasis, enhancing tolerance

to autoantigens and non-pathogenic non-autoantigens (11). The

interplay between gut microbiota and the host’s innate and adaptive

immunity potentially influences the susceptibility to autoimmune

thyroid disease (42, 43). Moreover, reduced intestinal motility in

patients with hypothyroidism might disrupt intestinal substrate

utilization and physicochemical conditions, culminating in gut

microbiota dysbiosis exacerbating the condition or giving rise to

complications (44). To address these intricacies, we conducted a

comprehensive bidirectional two-sample MR study utilizing

multiple GWAS datasets. This investigation aimed to elucidate

the bidirectional causal effects links between gut microbiota and

thyroid dysfunction, shedding light on the pathogenesis of

autoimmune hypothyroidism and informing strategies for

prevention, delay, and reversal of thyroid dysfunction–associated

health conditions.

Numerous clinical trials have identified disparities in gut

microbiota composition between thyroid dysfunction patients and

healthy populations. However, establishing the bidirectional causal

relationship between gut microbiota alterations and thyroid

dysfunction remained elusive. For instance, a cross-sectional study

encompassing 97 cases revealed significantly lower levels of Alistipes,
FIGURE 4

Forest plot for the causal effect of hypothyroidism on gut microbiota by the five MR methods. The error bar represents the 95% confidence interval
of the hazard ratio. nSNP, number of SNPs; OR, odds ratio; MR, Mendelian randomization; IVW, inverse variance weighted.
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Lachnospiraceae, Intestinimonas, Ruminococcus, and Subdoligranulum

in hypothyroid patients, whereas Phascolarctobacterium and

Bacteroidetes were more abundant (45). Another study comparing

29 hypothyroid patients with 11 healthy individuals highlighted a

higher prevalence of Actinobacteria and Enterobacteriaceae and

significantly diminished counts of Bifidobacteria and

Ruminococcaceae in the hypothyroid group (46). Our MR analysis

not only validated these findings but also established the bidirectional

causal relationship between altered gut microbiota and diminished

thyroid function. Notably, the genera Intestinimonas and

Ruminiclostridium5 were linked to reduced thyroid function, whereas

the genera Bifidobacterium and Lachnospiraceae UCG008 and phylum

Actinobacteria mitigated this decline. Furthermore, only after the onset

of hypothyroidism did the genera Eubacterium ruminantium group,

Ruminococcaceae UCG005, and Erysipelotrichaceae UCG003 exhibit

changes (47, 48). Previous controlled studies also revealed a significant

decrease in Bacteroidetes in hyperthyroid patients with elevated TSH

levels, with MR analysis corroborating Bacteroidetes’ role in decreasing

TSH (49). In an RCT, decreased Eubacterium post-probiotic

intervention ameliorated complications in patients not treated with

radioiodine after thyroidectomy, aligning with our study’s

identification of Eubacterium as a risk factor for TPOAb positivity (50).
Frontiers in Endocrinology 07
Several mechanisms underpinning gut microbiota’s impact on

thyroid function via the thyroid–gut axis have been elucidated. The

equilibrium between pathogenic and probiotic bacteria is pivotal for

maintaining gut barrier function. Bifidobacterium, a widely used

probiotic, confers several physiological benefits to humans,

rendering it a protective genus against hypothyroidism in our

study (51). In addition, phylum Actinobacteria and genus

Lachnospiraceae UCG008, both protective in this study, are

implicated in human sugar and protein metabolism. Phylum

Actinobacteria participates in the biosynthesis of phenylalanine,

tyrosine, and tryptophan, whereas Lachnospiraceae UCG008 is

associated with alanine, aspartate, and glutamate metabolism (52–

54). Our results also identified Ruminiclostridium5 as a risk for

promoting hypothyroidism. Although limited information is

available on Ruminiclostridium5, its increased abundance is

linked to systemic inflammation and a negative correlation with

secondary and conjugated bile acids (55, 56). Consistent with prior

studies, phylum Verrucomicrobia emerged as a protective factor

against hypothyroidism in our result. This phylum comprises

diverse beneficial bacteria for the gut, whose outer membrane

proteins effectively safeguard interactions with other cells (57).

Genus Akkermansia, a member of the phylum Verrucomicrobia,
B C D

E F G H

I J K

A

FIGURE 5

Leave-one-out plots for the causal effect of hypothyroidism on gut microbiota. The red line is the random effect of the IVW method and the error
bar represents the 95% confidence interval with the IVW method. (A) Class Negativicutes, (B) class Verrucomicrobiae, (C) family Christensenellaceae,
(D) family Verrucomicrobiaceae, (E) genus Akkermansia, (F) genus Erysipelotrichaceae UCG003, (G) genus Eubacterium ruminantium group, (H)
genus Ruminococcaceae UCG005, (I) order Selenomonadales, (J) order Verrucomicrobiales, and (K) phylum Verrucomicrobia.
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plays a significant role in enhancing host metabolic function and

immune responses. Intriguingly, its abundance significantly

decreases after hypothyroidism onset (58). Despite these insights,

in-depth in vivo and in vitro experiments are imperative to explore

the effects and mechanisms of gut microbiota as delineated in

our findings.

The bidirectional two-sample MR study offers significant

advantages in investigating the bidirectional causal relationship

between gut microbiota and hypothyroidism. First, the sample

size of clinical trials often lacks the representativeness necessary

for generalizability. In contrast, our study utilized gut microbiome

data from 13,266 samples. Thyroid function–related data were

sourced from four datasets in three databases, encompassing

hundreds of thousands of samples, each mutually exclusive. This

vast dataset enhances the present results’ representativeness and

credibility. Moreover, IV analysis grounded in effectively mitigates

confounding factors and eliminates the outcome’s interference with

the exposure’s reverse effect. Utilizing the MR-PRESSO approach

and a comprehensive set of sensitivity analyses eliminates study

pleiotropy and heterogeneity. The non-duplication of GWAS

datasets for both exposure and outcome samples significantly

reduces and avoids bias. However, it is crucial to acknowledge the

study’s limitations. Gut microbiota data were derived from the

GWAS meta-analysis rather than raw data, precluding subgroup

analyses. In addition, the study’s inclusion was limited to

individuals of European ancestry, restricting the applicability of

our findings to broader populations. Furthermore, the lowest

taxonomic level for gut bacteria is the genus, precluding an in-

depth exploration of gut microbiota ’s causal effects on

hypothyroidism at the species level. Notably, some results, with a

limited number of SNPs, necessitate cautious interpretation. It is

pivotal to underscore that RCTs remain the gold standard for

treatment development and establishing causal relationships in

biological contexts. They offer unparalleled control and

evidence. Mendelian randomization analysis serves as a potent

supplementary tool, especially in scenarios where conducting

RCTs proves challenging.
Conclusions

In summary, this study firstly and comprehensively provides

evidence to support the effects of various gut microbiota on thyroid

dysfunction, including hypothyroidism, TSH, thyroxine, and

TPOAb, and further reveals alterations in gut microbiota

following hypothyroidism. Genera Intestinimonas, Eubacterium

brachy group, Ruminiclostridium5, and Ruminococcaceae UCG004

are found to be risk factors for decreased thyroid function, whereas

genera Bifidobacterium and Lachnospiraceae UCG008 and phyla

Actinobacteria and Verrucomicrobia were protective. Eight types of

gut microbiota are thought to show altered abundance after the

onset of hypothyroidism. This bidirectional two-sample MR study

provides fairly strong evidence for the thyroid–gut axis theory to
Frontiers in Endocrinology 08
select more targeted probiotics to reverse the disturbed immune

system and control the progression of thyroid dysfunction.
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