2,343 research outputs found
Heavy cycles in k-connected weighted graphs with large weighted degree sums
AbstractA weighted graph is one in which every edge e is assigned a nonnegative number w(e), called the weight of e. The weight of a cycle is defined as the sum of the weights of its edges. The weighted degree of a vertex is the sum of the weights of the edges incident with it. In this paper, we prove that: Let G be a k-connected weighted graph with kâ©Ÿ2. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k+1), if G satisfies the following conditions: (1) The weighted degree sum of any k+1 pairwise nonadjacent vertices is at least m; (2) In each induced claw and each induced modified claw of G, all edges have the same weight. This generalizes an early result of Enomoto et al. on the existence of heavy cycles in k-connected weighted graphs
Squeezing based on nondegenerate frequency doubling internal to a realistic laser
We investigate theoretically the quantum fluctuations of the fundamental
field in the output of a nondegenerate second harmonic generation process
occuring inside a laser cavity. Due to the nondegenerate character of the
nonlinear medium, a field orthogonal to the laser field is for some operating
conditions indepedent of the fluctuations produced by the laser medium. We show
that this fact may lead to perfect squeezing for a certain polarization mode of
the fundamental field. The experimental feasibility of the system is also
discussed.Comment: 6 pages, 5 figure
Unintentional F doping of the surface of SrTiO3(001) etched in HF acid -- structure and electronic properties
We show that the HF acid etch commonly used to prepare SrTiO3(001) for
heteroepitaxial growth of complex oxides results in a non-negligible level of F
doping within the terminal surface layer of TiO2. Using a combination of x-ray
photoelectron spectroscopy and scanned angle x-ray photoelectron diffraction,
we determine that on average ~13 % of the O anions in the surface layer are
replaced by F, but that F does not occupy O sites in deeper layers. Despite
this perturbation to the surface, the Fermi level remains unpinned, and the
surface-state density, which determines the amount of band bending, is driven
by factors other than F doping. The presence of F at the STO surface is
expected to result in lower electron mobilities at complex oxide
heterojunctions involving STO substrates because of impurity scattering.
Unintentional F doping can be substantially reduced by replacing the HF-etch
step with a boil in deionized water, which in conjunction with an oxygen tube
furnace anneal, leaves the surface flat and TiO2 terminated.Comment: 18 pages, 7 figure
Experimental investigation of continuous variable quantum teleportation
We report the experimental demonstration of quantum teleportation of the
quadrature amplitudes of a light field. Our experiment was stably locked for
long periods, and was analyzed in terms of fidelity, F; and with signal
transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+}
V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06
+/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1
and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure
Identification of low Ca2+stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL)
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca2+ deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca2+-deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8âČ-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca2+-deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca2+ deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca2+-induced embryo abortion and described the method for other fields of study
Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state
We present a protocol for performing entanglement swapping with intense
pulsed beams. In a first step, the generation of amplitude correlations between
two systems that have never interacted directly is demonstrated. This is
verified in direct detection with electronic modulation of the detected
photocurrents. The measured correlations are better than expected from a
classical reconstruction scheme. In the entanglement swapping process, a
four--partite entangled state is generated. We prove experimentally that the
amplitudes of the four optical modes are quantum correlated 3 dB below shot
noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor
inconsistency in notation removed; format for units in the figures change
First Report of Alternaria Black Spot Disease Caused by Alternaria alternata on the Invasive Weed Solanum rostratum in Xinjiang, China
Solanum rostratum is a noxious weed, native to Mexico and the USA, which has invaded Liaoning, Jilin, Hebei, Inner
Mongolia, Shanxi, Xinjiang and Beijing, China (Eminniya et al., 2013). In August 2015, foliar symptoms of yellowish to black
spots were observed on plants of S. rostratum nearby an agricultural plantation in Changji, Xinjiang. The following year, about
17% of the 206 plants surveyed on about 0.2 ha of deserted farmland were infected from July-September (at 19-35°C under
29-97% RH)
Network patterns and strength of orbital currents in layered cuprates
In a frame of the model we derive the microscopical expression for
the circulating orbital currents in layered cuprates using the anomalous
correlation functions. In agreement with -on spin relaxation (SR),
nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS)
experiments in YBaCuO we successfully explain the order of
magnitude and the monotonous increase of the {\it internal} magnetic fields
resulting from these currents upon cooling. However, the jump in the intensity
of the magnetic fields at T reported recently seems to indicate a
non-mean-field feature in the coexistence of current and superconducting states
and the deviation of the extended charge density wave vector instability from
its commensurate value {\bf Q}) in accordance with the
reported topology of the Fermi surface
How to compare arc-annotated sequences: The alignment hierarchy
International audienceWe describe a new unifying framework to express comparison of arc-annotated sequences, which we call alignment of arc-annotated sequences. We first prove that this framework encompasses main existing models, which allows us to deduce complexity results for several cases from the literature. We also show that this framework gives rise to new relevant problems that have not been studied yet. We provide a thorough analysis of these novel cases by proposing two polynomial time algorithms and an NP-completeness proof. This leads to an almost exhaustive study of alignment of arc-annotated sequences
Entangled light in transition through the generation threshold
We investigate continuous variable entangling resources on the base of
two-mode squeezing for all operational regimes of a nondegenerate optical
parametric oscillator with allowance for quantum noise of arbitrary level. The
results for the quadrature variances of a pair of generated modes are obtained
by using the exact steady-state solution of Fokker-Planck equation for the
complex P-quasiprobability distribution function. We find a simple expression
for the squeezed variances in the near-threshold range and conclude that the
maximal two-mode squeezing reaches 50% relative to the level of vacuum
fluctuations and is achieved at the pump field intensity close to the
generation threshold. The distinction between the degree of two-mode squeezing
for monostable and bistable operational regimes is cleared up.Comment: 7 pages, 4 figures; Content changed: more details added to the
discussion. To be published in Phys. Rev.
- âŠ